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ABSTRACT The decision of which requirements should be satisfied in the next release is crucial to software
company. The next release problem, a family of requirements selection decision, aims to maximize profits
by satisfying requirements to balance customer profits and development costs. However, due to diverse
practical scenarios, solutions to the next release problem have to face many different objectives. In this
paper, we propose an exploratory study on the many-objective next release problem with five evolutionary
optimization algorithms. The goal of this study is to use the experimental results to assist project managers
to make the requirements decision in the scenario of many decision objectives. This study focuses on four
research questions, including the effectiveness of optimization, the significance of results, the distribution of
metric values, and the correlation between metrics. We design the study to explore five objective functions of
the next release problem, including the maximum of customer profits, the minimum of requirements costs,
the fairness of requirements selection, etc. The study is conducted on 12 benchmark instances from three
real-world projects via evaluating six metrics. Our study suggests that among algorithms in comparison,
either eMOEA or IBEA is the best choice for the many-objective next release problem.

INDEX TERMS Requirements decision, the many-objective next release problem, fairness analysis, search-
based requirements engineering

I. INTRODUCTION
Requirements selection is an inevitable phase that determines
the benefits from customers [1], [2]. Software companies (or
organizations) try to satisfy all requirements from customers
to pursue the maximum value of profits, such as incomes,
subscribers, or reputation. For large-scale software projects,
it is impossible to satisfy all potential requirements due to
the tremendous development costs, such as the budget or the
time. To balance the customer profits and the development
costs, a software company has to decide which requirements
should be completed in the next software release.

The Next Release Problem (NRP), a family of require-
ments selection problems, aims to find out the best decision
of satisfying requirements from customers. In a large project,
exhausting every solution is time-consuming due to the large
search space. Bagnall et al. [3] proposed the first model of
the NRP. This work has examined the performance of sev-
eral heuristics, such as hill climbing and genetic algorithms.

Jiang et al. [4] designed an approximate backbone based
multilevel algorithm to pursue the maximum profits under
a limited budget. Ren [5] has pushed the NRP into
a new model of multiple objectives: the multi-objective
NRP is to simultaneously maximize the customer prof-
its and minimize the requirements costs. Researchers have
proposed several models and methods to support the
decision of the multi-objective NRP, including fairness
analysis [6], robust analysis [2], interactive optimization [7],
and hardness exploration [8].

Under the umbrella of the multi-objective NRP, all the
existing work copes with two objectives, e.g., profits and
costs [9], or profits and fairness [6]. A general method of
solving the multi-objective NRP is to conduct a Pareto fron-
tier [10], which implies the set of current optimal solutions.
Based on such multi-objective NRP, a software company
selects requirements to balance two conflicting objectives for
the next release. In practice, however, more objectives exist.
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To determine the requirements selection, a company has
to simultaneously cope with three or more objectives. For
instance, the maximum of customer profits, the minimum of
requirements costs, and the fairness of requirements selection
should be considered together to find out the optimal deci-
sion. The assumption of two objectives in the NRP is violated;
meanwhile, finding out the Pareto frontiers of more than two
objectives may be infeasible [11]. There exists no prior study
to provide support to the requirements decision for the NRP
with many decision objectives.

In this paper, we addressed the NRP model with more
than three objectives, namely the Many-Objective NRP
(ManyNRP for short). We proposed an exploratory study on
the ManyNRP with five state-of-the-art evolutionary opti-
mization algorithms: NSGA-II, DBEA, NSGA-III, eMOEA,
and IBEA.We designed the study to explore how to determine
five objectives of the ManyNRP, including the maximum
of customer profits, the minimum of requirements costs the
fairness of requirements selection, etc. This study focuses
on four research questions, including the effectiveness of
optimization, the significance of results, the distribution of
metric values, and the correlation between metrics. The study
is conducted on 12 benchmark instances from three real-
world projects, Eclipse, Gnome, and Mozilla; six metrics
are used to evaluate the effectiveness of solving ManyNRP.
Our study suggests that among algorithms in comparison,
either eMOEA or IBEA is the best choice for the many-
objective next release problem for the evaluation of most
metrics; NSGA-II can obtain the best solutions for the metric
of Spacing. This study provides a general way to support the
decision of many-objective requirements selection.
Application Scenario: A project manager may face many

optimization objectives (e.g., four or more) during the phase
of requirements analysis. Due to the large number of objec-
tives, it is challenging to manually select customers that
should be satisfied in the next release. Our work aims to
provide a general solution to this scenario; our experiment
shows that eMOEA or IBEA can be directly used to assist the
decision by the project manager.

This paper makes the following major contributions:
• We addressed the ManyNRP, namely the scenario of
simultaneously optimize more than three objectives for
the NRP. To the best of our knowledge, this is the first
work that seeks the solution to the emerging problem of
the ManyNRP.

• We proposed an exploratory study on the ManyNRP via
examining the effectiveness of five optimization algo-
rithms on 12 instances from three real-world projects.

• We explored the optimization via answering four
research questions and suggest that eMOEA and IBEA
are the two best algorithms, which outperform the others
under comparison.

The remainder of this paper is organized as follows.
Section II presents the background and the problem defini-
tion. Section III shows the design of our study on instances
from three projects. Section IV shows the result of exploring

the effectiveness of solving the ManyNRP. Section V dis-
cusses the threats to the validity of our work. Section VI lists
the related work and Section VII concludes this paper.

II. BACKGROUND AND PROBLEM DEFINITION
In this section, we present the background and the problem
definition of the many-objective NRP.

A. THE NEXT RELEASE PROBLEM
Requirements analysis is to model potential real-world
applications into software descriptions [12]. The NRP is to
optimize the selection of satisfied requirements in the next
software release. Fig. 1 illustrates the NRP with an example.
This example is extracted from the project of Eclipse Java
Developer Tools (JDT). JDT is a static Java analysis tool,
which can be used to analyze and transform Java source code.

FIGURE 1. Illustration of the many-objective NRP with seven
requirements and three customers.

As shown in Fig. 1, three customers request for seven
requirements in the release. There exist dependencies among
requirements. For instance, the requirement of method mod-
eling relies on completing the requirement of source code
parsing. The dependencies enlarge the complexity of require-
ments selection. Since the dependencies are known to the
software company, these dependencies among requirements
can be simplified as direct requests between customers and
requirements. Bagnall et al. [3] and Xuan et al. [13] have
introduced the method of simplifying the NRP by removing
such dependencies.

To determine whose requirements should be satisfied (i.e.,
which customer should be prioritized), a software company
considers both customer profits and requirements costs [14].
In practice, customer profits and requirements costs are con-
flicting for the decision of requirements because maximizing
the customer profits leads to the maximum of requirements
costs. Bagnall et al. [3] first formalized the NRP by opti-
mizing the requirements selection under a limited budget.
This is a single-objective optimization problem and has
become one of pioneering scenarios of search-based software
engineering [6].

It is straightforward to convert the limited budget into
another objective for the NRP. This leads to another model
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that simultaneously optimizes two objectives, i.e., to maxi-
mize customer profits and to minimize customer costs. This
model is referred to as the multi-objective NRP. Note that
in the literature of the NRP, such multi-objective NRP only
contains two objectives. Various multi-objective optimization
models have been proposed or applied to solve the multi-
objective NRP to balance the conflicts between two decision
objectives. For instance, Finkelstein et al. [6] have addressed
the conflict between the number of satisfied requirements
(i.e., the maximum value) and the fairness of satisfied ones
for each customer (i.e., the minimum of the standard devi-
ation of satisfied requirements). In their study, even the
requested requirements by a customer are not completely
satisfied, the satisfied ones can bring benefits. The scenario of
such multi-objective NRP can better modeling the real-world
requirements selection than the single-objective NRP.

B. MANY-OBJECTIVE OPTIMIZATION
The multi-objective NRP in Section II-A has not provided
a solution to the optimization of more than two objectives.
Recently, many-objective optimization is proposed to address
such optimization problem [15]. The many-objective opti-
mization is a specific model of the multi-objective one,
but contains more than three objectives. These objectives
enlarges the scale of the search space. Let X be a generic form
of a variable. The many-objective optimization model can be
generally stated as follows,

minimize
−→
f (X ) = [f1(X ), f2(X ), . . . , ft (X )]T , t ≥ 4

subject to: gj(X ) = 0, 1 ≤ j ≤ p

hk (X ) ≥ 0, 1 ≤ k ≤ q

x li ≤ xi ≤ x
u
i ,

where t is the number of objectives, p and q are the number
of equality constraints and inequality constraints, xi is the ith
component of the variable X , and x li and xui are the lower
boundary and the upper boundary, respectively.

An assumption of many-objective optimization is that the
number of objectives is four or more.1 This unique feature
makes many-objective optimization hard to be solved. Most
existing algorithms for multi-objective optimization lose
their magic for many-objective optimization. For instance,
NSGA-II by Deb et al. [10] is widely-used in optimiz-
ing two conflicting objectives. In NSGA-II, solutions are
ranked according to the two objectives; then a Pareto fron-
tier is conducted to converge top-ranking solutions. How-
ever, the assumption of four or more objectives in many-
objective optimization makes ranking solutions difficult: an
optimization algorithm cannot distinguish solutions due to
the conflicting objective values. A study by Jaimes et al. [16]
shows that finding the top-ranking solutions via multi-
objective optimization requires examine over 62K, 1,953K,

1In some problems, finding out a solution to three-objective optimization
is as hard as that to two-objective optimization [16]. In this paper, we address
the problem with four or more objectives and do not discuss the potential
theory of the hardness of problem solving.

and 1,708,984K solutions for 4, 5, and 7 objectives, respec-
tively. To address the weakness by the multi-objective opti-
mization, several many-objective optimization algorithms
are proposed, such as NSGA-III (an upgraded version of
NSGA-II via embedding reference points) and IBEA.

C. THE MANY-OBJECTIVE NEXT RELEASE PROBLEM
In requirements engineering, either selecting a set of cus-
tomers or selecting a set of requirements leads to the decision
of satisfying requirements. In this paper, we followed [3] to
treat the solution to the NRP as the selection of customers;
then requirements requested by these selected customers can
be directly extracted. We define the general problem of the
Many-Objective NRP (ManyNRP for short) according to the
simplified model [3].
Definition 1: The simplified ManyNRP.
Given a set R of candidate requirements and a set S of

customers, each requirement rj ∈ R (1 ≤ j ≤ m) has a
cost cj and each customer si ∈ S (1 ≤ i ≤ n) has a profit wi.
A request qi,j = 1 or 0 indicates that a customer si requests
for satisfying a requirement rj in the next release or not.
Followed [3], a solution X ⊆ S is defined as a subset of all
customers. The selection of customers can be directly trans-
ferred into the selection of requirements. Given a solution X ,
the selection of requirements is R(X ) = ∪si∈X ,qi,j=1{rj}.

The goal of the ManyNRP is to find out an optimal solu-
tion X∗ to simultaneously minimize given t objectives. Each
minimum objective function fd (X ) (1 ≤ d ≤ t) is defined
according the application scenario.2

Taking Fig. 1 as an example, to optimize the require-
ments selection of three customers and seven requirements,
many objectives can be considered, including maximizing
the customer profits, minimizing the requirements costs, sat-
isfying the fairness of requirements, balancing the ratio of
selected requirements, etc. Due to diverse customer profits
and requirements costs, the ManyNRP can be adapted to
different application scenarios.

III. AN EXPLORATORY STUDY ON THE MANYNRP
We present an exploratory study on the effectiveness of the
ManyNRP via evaluating five algorithms on 12 instances
from three projects, Eclipse, Gnome, and Mozilla.

A. STUDY SETUP
Requirements are one of private data in software compa-
nies. Most of existing work uses randomly generated data
to conduct experiments. In our study, we followed [17]–[20]
to use 12 relatively-realistic NRP instances, which are
extracted from three real-world projects [13], including
Eclipse, Gnome, and Mozilla.3 All these NRP instances are
mined by the analogy between the requests of requirements
by customers and the bug reports by testers or end users.

2Maximizing an objective function can be transferred by minimizing its
opposite value.

3Dataset of the NRP instances, http://cstar.whu.edu.cn/p/nrp/.
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TABLE 1. Statistics of 12 instances from Eclipse, Gnome, Mozilla.

A bug report is an online document that records the descrip-
tion of a newly-submitted bug [21]. The values of instances
are obtained according to different bug report data as well as
related testers or end users. Table 1 lists the basic statistics
of these NRP instances from three projects. Each project
consists of four instances.

In our study, we examined five objectives in theManyNRP.
As mentioned in Section II-B, diverse application scenar-
ios can lead to many objectives. This study does not aim
to exhaustively check the results of all existing objectives.
Instead, we aim to propose a general method to explore
solutions to theManyNRP; meanwhile, under the assumption
of many objectives, we do not discuss which single solution
is the best. Our study involves five objectives as follows.

1) MAXIMUM OF CUSTOMER PROFITS
The sum of customer profits is the major objective in the early
stage of the NRP. The profits to the company is the original
intention of proposing the NRP model [3]. We define this
objective as follows,

maximize f1(X ) =
∑
si∈X

wi.

2) MINIMUM OF REQUIREMENTS COSTS
The sum of requirements costs is expected to be the mini-
mum. In the first original model [3], the cost of implementing
requirements is a pre-defined budget. Then Zhang et al. [22]
first treated this budget as a minimum objective. We define it
as follows,

minimize f2(X ) =
∑

rj∈R(X )

cj.

3) COVERAGE OF REQUIREMENTS FOR CUSTOMERS
From the perspective of the company, an ideal solution is
to satisfy all requirements that are requested by customers.
Finkelstein et al. [6] proposed the first analysis to check
the coverage of requirements by all customers. In our study,
we check this coverage via minimizing the standard devia-
tion of satisfied requirements for all customers. Let σ (v) be
the standard deviation of a set of values {v}, i.e., σ (v) =√∑

(v− v)2, where v is the average of elements in {v}. Let
R(si) be the set of satisfied requirements for the customer
si, i.e., R(si) = ∪rj∈R(X ),qi,j=1{rj}. Note that from the def-
inition of R(si), even not all requirements from a customer
are satisfied, a part of requested requirements can be counted

for a customer. For instance, if a customer requests for five
requirements, then three out of five can be in the next release
via satisfying requirements for other customers. The objective
is defined as follows,

minimize f3(X ) = σ (|R(si)|)

where | · | is the cardinality of a set ·.

4) FAIRNESS OF CUSTOMERS
The ratio between the satisfied requirements and the total
requests is important to a customer. Harman et al. [2] have
analyzed the sensitivity of implementing requirements for
customers. We define the fairness of customers via dividing
the number of satisfied requirements by the total requests.
Let A(si) be the set of total requested requirements and
A(si) = ∪qi,j=1{rj}. This objective is defined as follows,

minimize f4(X ) = σ
(
|R(si)|
|A(si)|

)
.

5) FAIRNESS OF RESOURCE ALLOCATION
Finally, we examine the fairness of the resource allocation
in requirements selection, i.e., how much is spent to develop
requirements for one customer [6]. This objective is defined
as follows,

minimize f5(X ) = σ

 ∑
rj∈R(si)

cj

 .

We implemented the experiment via Java JDK 1.7 on the
top of the MOEA framework4 and the jMetal lib5 [23]. In the
experiment, each algorithm with each setup repeats running
for 30 times and the maximum number of iterations during
one run is set to 5000. Section III-B will introduce the five
optimization algorithms under evaluation.

B. ALGORITHMS UNDER COMPARISON
Our study is to explore the effectiveness of several existing
evolutionary optimization algorithms. Therefore, we briefly
introduce the algorithms under evaluation: NSGA-II, DBEA,
NSGA-III, eMOEA, and IBEA. We selected these five algo-
rithms because these algorithms are widely used. These
algorithms can be roughly divided into five categories,

4MOEA framework, http://moeaframework.org/.
5jMetal, http://jmetal.sourceforge.net/.
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i.e., optimization via genetic algorithms, decomposition, ref-
erence points, ε-dominance, and the indicator, respectively
[11], [15].

NSGA-II [10] is a well-known evolutionary algorithm
for multi-objective optimization. When facing two objec-
tives, NSGA-II can easily detect the dominance between two
solutions, i.e., the relationship that a solution is better than
another. This makes NSGA-II robust for most application
scenarios of multi-objective optimization.

DBEA [24] is a typical decomposition-based evolutionary
algorithm that is designed for many-objective optimization.
DBEA generates uniformly distributed reference points via
sampling techniques and tends to balance the convergence
and the diversity. A reference point denotes a known best
solution under a particular objective.

NSGA-III [15] is an upgraded version of NSGA-II and
targets the difficulty of ranking solutions under the scenario
of many-objective optimization. The fundamental difference
between NSGA-III and its previous version NSGA-II is the
niche preservation operation [11]. NSGA-III starts its search
from a set of reference points. This makes NSGA-III outper-
form NSGA-II in many applications, but fail in the robust-
ness.

eMOEA [25] is an ε-dominance-based algorithm for
multi-objective optimization. The ε value is a small constant.
The kernel idea of eMOEA is to divide the objective space
into hyper-boxes with a given size ε and cluster nondomi-
nated solutions to each box.

IBEA [26] is an indicator-based evolutionary algorithm.
This algorithm combines arbitrary indicators to adapt to the
preference without requiring any additional diversity preser-
vation mechanism during calculation.

C. EVALUATION METRICS
We evaluated the algorithms via six metrics. Table 2 briefly
describes the metrics in the evaluation for the sake of space.
In the description, the approximation set and the reference
set represents two sets of solutions: one approximates all
obtained solutions and the other denotes the defined best
solutions or the setup. We also list the preferred values of
each metric. For instance, a high value of HV denotes a better
Pareto space while a low value of Epsilon denotes a close
distance between obtained solutions and optimal solutions.

Details of calculating these metrics can be found in [10], [11],
[15], [27], and [28]. Among the metrics, the hypervolume is
used as the major metric in existing studies.

D. RESEARCH QUESTIONS
In this exploratory study, we focus on four Research
Questions (RQs), including the effectiveness of optimization,
the significance of results, the distribution of metric values,
and the correlation between metrics, respectively.
RQ1: How effective can existing optimization algorithms

perform on the ManyNRP?
Effectiveness is the most important goal of evaluating

optimization. In RQ1, we compare the results by five evo-
lutionary optimization methods via evaluating six metrics.
A method that reaches the best results is the first choice in
practice.
RQ2: Is the comparison among algorithms statistically

significant?
Statistical significance can aid the evaluation of results.

In particular, significant results can be used to identify
whether two methods can be distinguished by checking their
results. RQ2 is designed to check the significance between
metric values.
RQ3: How do metric values distribute on benchmark

instances?
In RQ3, we examine the distribution of metrics values on

12 benchmark instances. Such distribution can help under-
stand the results of particular algorithms as well as instances.
RQ4: Is there any correlation between metric values?
We speculate that there may exist correlations between

metric values. Therefore, such a correlation can reduce the
duplicate evaluation in under limited resources. The aim of
RQ4 is to examine the existence of the correlation between
metric values.

IV. RESULTS
We conducted an exploratory study via answering four RQs.

A. RQ1. HOW EFFECTIVE CAN EXISTING OPTIMIZATION
ALGORITHMS PERFORM ON THE ManyNRP?
Tables 3, 4, and 5 present the comparison results of sixmetrics
by five optimization algorithms on 12 benchmark instances
from three projects, Eclipse, Gnome, and Mozilla. Each table

TABLE 2. Evaluation metrics for many-objective optimization.
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TABLE 3. Comparison of six metrics by five optimization algorithms on four instances from Eclipse.

TABLE 4. Comparison of six metrics by five optimization algorithms on four instances from Gnome.

consists of four instances; the results are shown with the
average of 30 repeats and their standard deviation. Among
five optimization algorithms, eMOEA and IBEA perform the
best on 12 instances; NSGA-II can obtain several best values
when evaluating Spacing; DBEA and NSGA-III never reach
the best results during the comparison.

Table 3 shows the evaluation results on instances from
Eclipse. Two algorithms eMOEA and IBEA beat all the other

three algorithms. For three metrics, HV, GD, and MPFE,
IBEA gets the best results of all four instances; for the other
three metrics, eMOEA gets the best. As shown in Table 3,
the results on four instances are stable.

Table 4 shows the evaluation results on instances from
Gnome. Two algorithms eMOEA and IBEA again show the
best results on all the metrics but one: NSGA-II obtains the
best value when evaluating Spacing. The results from Gnome
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TABLE 5. Comparison of six metrics by five optimization algorithms on four instances from Mozilla.

are not as stable as those from Eclipse. For example, in the
instance nrp-g2, IBEA can obtain the best values for four
metrics; eMOEA loses the best value for the IGDmetric. Two
algorithms DBEA and NSGA-III again fail in reaching the
best results on all the instances.

Table 5 shows the evaluation results on instances from
Mozilla. IBEA obtains the best values for most metrics;
eMOEA also obtains many best values; NSGA-II reaches the
best Spacing values on three instances, nrp-m1, nrp-m2, and
nrp-m3. Compared across Tables 3, 4, and 5, results from
Mozilla are the most unstable ones.

As shown in the empirical results, NSGA-III is not suitable
for solving the ManyNRP although it is designed to break the
assumption of multi-objective optimization. This experiment
also verifies that several typical algorithms are robust to
different scenarios, such as NSGA-II and IBEA. This is to
some extent consistent with existing observations [15], [29].

Finding 1. To sum up, our results empirically show that
IBEA and eMOEA are two best techniques for solving the
ManyNRP. If counting the number of best results of met-
rics, IBEA wins. If considering different metrics, IBEA is
the best choice for evaluating HV, GD, andMPFE; eMOEA
is the best choice for evaluating Epsilon, GD, and Spacing.

B. RQ2. IS THE COMPARISON AMONG ALGORITHMS
STATISTICALLY SIGNIFICANT?
We evaluated the statistical significance among algorithm
results. As mentioned in Section IV-A, Tables 3, 4, and 5 have
shown that the difference among algorithms can be directly
observed and stable. Therefore, we leveraged the statistical
tests to support the above results.

We used the Mann-Whitney U test to calculate the statis-
tical significance. The Mann-Whitney U test, also called the
Wilcoxon rank-sum test, is employed to determine whether
two independent set of samples are selected from the same
distribution.

We selected two metrics to compare the significance: HV
and Spacing. We chose HV since this metric is the most
widely used one in evaluating many-objective optimization;
we chose Spacing since NSGA-II can only perform the best
for this metric. Tables 6 and 7 show the statistical significance
between two algorithms for HV and Spacing, respectively.
Only half of the matrixes are shown because the significance
is symmetric.

TABLE 6. Significance of the hypervolume metric by the Mann-Whitney U
test among five algorithms.

TABLE 7. Significance of the spacing metric by the Mann-Whitney U test
among five algorithms.

As shown in Table 6, most of results between each pair of
algorithms are statistical significant. That is, the difference
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FIGURE 2. Box-plots of the hypervolume by eMOEA and IBEA.

FIGURE 3. Box-plots of the IGD by eMOEA and IBEA.

between two algorithms exist and could be perceived. One
exception is the pair of NSGA-III and DBEA. As mentioned
in Section IV-A, both algorithms perform not well. It is
possible that results by these two algorithms behave similar.

As shown in Table 7, results between each pair are statisti-
cal significant. For the Spacing metric, all pairs of results can
be distinguished.

Finding 2. After calculating the statistical significance via
the Mann-Whitney U test, we found that results by most
of pairs of algorithms are statistically significant. That is,
these algorithms can be easily distinguished.

C. RQ3. HOW DO METRIC VALUES DISTRIBUTE ON
BENCHMARK INSTANCES?
To better understand the distribution of results by many-
objective optimization, we leveraged the box-plots to show
the quantiles of the evaluation. Figs. 2, 3, and 4 show the box-
plots of two algorithms, eMOEA and IBEA, for three metrics,
the hypervolume, the IDG, and the Spacing.

As shown in Fig. 2, IBEA always achieves better results
than eMOEA. Among 12 instances, the second quantile (the
value with the 25% ranking from low to high) of IBEA
is higher than the fourth quantile (the value with the 75%
ranking from low to high) of eMOEA. This result indicates
that the difference of the hypervolume metric values between
two algorithms is easy to be identified.

In Fig. 3, the median values by eMOEA are better
than those by IBEA on 9 out of 12 instances. In 8 out

of 12 instances, the middle 50% values (from 25% to 75%
ranking) have an overlap between two algorithms.

As shown in Fig. 4, eMOEA outperforms IBEA. In 11 out
of 12 instances, there is no overlap for the middle 50% values
between two algorithms. One exceptional instance is nrp-
e4: a tiny overlap exists. Compared across Figs. 2, 3, and 4,
the Spacing metric leads to more outliers than the other two
metrics.

Finding 3. The distribution of metric values of eMOEA and
IBEA seems stable. We observed that IBEA beats eMOEA
for the hypervolume metric while eMOEA beats IBEA for
the Spacing metric.

D. RQ4. IS THERE ANY CORRELATION AMONG
METRIC VALUES?
As shown in Section IV-A, several metric values seem to be
correlative. We explored such correlations via the Pearson
correlation coefficient. Given two sets of samples Y and Z ,
where yi ∈ Y and zi ∈ Z (1 ≤ i ≤ q), the Pearson correlation
coefficient is defined as follows,

Pearson(Y ,Z ) =

∑q
i=1(yi − y)(zi − z)√∑q

i=1(yi − y)
2
√∑q

i=1(zi − z)
2
,

where y and z denote the average values of yi and zi, respec-
tively. The Pearson correlation coefficient belongs to [−1, 1]:
a positive value indicates one set of samples increases while
the other increases; a negative value indicates one set of sam-
ples decreases with the other increases [30]. A high absolute
value shows that two sets of samples are highly correlative.
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FIGURE 4. Box-plots of the Spacing by eMOEA and IBEA.

In our study, we focus on the absolute values of the Pearson
correlation coefficient. We selected two algorithms eMOEA
and IBEA; the correlation is calculated on three instances,
nrp-e1, nrp-g1, and nrp-m1. Tables 8 and 9 show the Pearson
correlation coefficient among metric values. We highlight the
absolute values over 0.5000.

TABLE 8. Pearson correlation between metrics for eMOEA.

As the results of eMOEA shown in Table 8, HV, IGD, GD,
and MPFE are four metrics that contain high correlations.
We can speculate that given limited resources, only evaluating
HV, Epsilon, and Spacing could be adequate.

As the results of IBEA shown in Table 9, HV and Epsilon
contain high correlations; GD and MPFE contain high corre-
lations. Correlation values on the instance nrp-g1 show that
there are many highly correlative metrics.

Finding 4. The result of Pearson correlation coeffi-
cient shows that there indeed exist high correlations
between metrics, between HV and IGD, between IGD
and GD, or between HV and Epsilon. If an experiment is
conducted under limited resources, evaluation with several
metrics can be omitted.

TABLE 9. Pearson correlation between metrics for IBEA.

V. THREATS TO VALIDITY
We present the threats to the validity of our study in four
categories.

A. MORE INSTANCES CAN HELP
In our study, 12 instances from three projects are used to eval-
uate five optimization algorithms. Our study aims to exhibit
the evidence on relatively-realistic requirements data. Using
these 12 instances is a common way for the evaluation on
real-world data of requirements selection [8], [13], [17]–[20].
As mentioned in Section III-A, requirements data is private
and important to software companies, especially commercial
companies. These 12 instances can be viewed as a trade-off
between real-world data and feasible experiments.

B. WHY OPTIMIZATION ALGORITHMS
BEHAVE DIFFERENT
This study contains five optimization algorithms, includ-
ing NSGA-II, DBEA, NSGA-III, eMOEA, and IBEA.
Experiments in Section IV-A show that several algorithms
do not behave as what they are expected. For instance,
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NSGA-III does not perform well. Similar to results from the
community of evolutionary computation, we can speculate
that NSGA-III may be not as robust as NSGA-II or IBEA.
However, we cannot find any solid evidence to support why
IBEA performs much better than NSGA-III. Meanwhile,
to the best of our knowledge, most of studies from the com-
munity of evolutionary computation also use empirical results
to compare the effectiveness of algorithms.

C. HOW MANY OBJECTIVES CAN BE CALLED ‘‘MANY’’
In Section II-B, we have introduced the difference between
multi-objective optimization and many-objective optimiza-
tion. This does not help determine how many objectives can
be called ‘‘many’’. This is a challenging problem, even in
the community of evolutionary computation [11]. Since the
Pareto frontier is hardly obtained for over four objectives,
we keep using experiments to evaluate the solutions to the
ManyNRP.

VI. RELATED WORK
The task of requirements selection can be conducted via two
categories: selecting customers or selecting requirements.
Due to the historical reason, the division between these two
categories is a little vague. Generally, selecting customers
as well as their profits falls into the category of the next
release problem [2], [6], [13] while selecting requirements
as well as their costs falls into the category of the release
planning problem [31], [32]. As mentioned in Section II-C,
selecting requirements or customers can be directly trans-
ferred into each other. For instance, several existing studies
such as Sarro et al. [29] have not distinguished these two
categories.

The research of the NRP has achieved fruitful results [3],
[5], [7], [13], [18], [19]. Zhang et al. [22] have formulized
the NRP into a multi-objective optimization problem and
have solved it with several typical optimization methods.
Finkelstein et al. [6] have proposed the fairness analysis
to aid the decision of the NRP. Harman et al. [2] have
designed an exact and scalable analysis for the sensitivity of
the multi-objective NRP. This work provides detailed com-
parison and understanding for the application scenario of the
NRP. Ren et al. [8] conducted a feature-based analysis to
explore the hardness of solving the NRP instances.

Different from the above work, this paper aims to conduct
an explorative study on the effectiveness of optimization
algorithms on the NRP with five objectives. This problem
falls into the category of many-objective optimization in
requirements selection, which has not been studied before.
We evaluated five optimization algorithms with six metrics
on 12 benchmark instances.

Requirements selection has attracted much attention since
this problem is practical in daily software design and develop-
ment. Fricker and Schumacher [31] conducted an industrial
study for the release planning with tree-structured features.
Li et al. [33] refined the requirements that are requested
by customers to formal methods. Hierons et al. [34] have

examined and optimized software product line via feature
models.

Optimization is a key topic of search-based software
engineering. Zheng et al. [35] proposed the paradigm of
multi-objective optimization for regression testing. Ferrucci
et al. [36] studied the multi-objective optimization for soft-
ware planning for overtime requirements. Ren et al. [37]
developed the co-evolutionary technique for project staff
assignments and job scheduling. Mkaouer et al. [38] have
studied the many-objective optimization for software refac-
toring via multiple quality attributes. Xuan et al. [39] and
Chi et al. [40] designed optimization methods to enhance the
existing test suites to improve the efficiency of test execu-
tion. Recently, Chen et al. [41] proposed a new paradigm of
optimization algorithms to replace the role of evolutionary
computing techniques in search-based software engineering.

VII. CONCLUSIONS
We conducted an exploratory study on the effectiveness of
finding solutions to the ManyNRP. This study has examined
the results of five algorithms on 12 NRP instances via eval-
uating six metrics. Experimental results show that IBEA is
the best among optimization algorithms under comparison.
Our study suggests a general way to study the ManyNRP and
provides a preliminary analysis for similar problems.

Our future work is to design a new algorithm for many-
objective optimization by analyzing which factor impacts
IBEA (or eMOEA) most. We also plan to propose other
objectives for the practice of the NRP.
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