
Multi-Perspective Visualization to Assist Code
Change Review

Chen Wang, Xiaoyuan Xie∗, Peng Liang, Jifeng Xuan
State Key Lab of Software Engineering, School of Computer Science, Wuhan University

Wuhan, Hubei, China
{cnwang, xxie, liangp, jxuan}@whu.edu.cn

Abstract—“Change-based” code review plays an important role
in open-source project development. Due to the large amount
of human involvement and tight time schedule, tools that can
facilitate this activity would be of great help. Current tools
mainly focus on difference extraction, code style examination,
static analysis, comment and discussion, etc. However, there is
little support to change impact analysis for code change review.
In this paper, we serve this purpose by providing a change review
assistance tool, namely, MultiViewer, for the most popular OSS
GitHub. We define metrics to characterize code changes from
multiple perspectives. Specifically, these metrics mine coupling
relations among related files in the changes, as well as estimate
the change effort, risk and impact. Such information is visualized
by MultiViewer in two formats. We demonstrate the helpfulness
of MultiViewer by showing its ability as indicators to some
important project features with real-life case studies.

Index Terms—Code review, change impact analysis, visualiza-
tion, GitHub

I. INTRODUCTION

In the trend of agile software development, “change-based”
code review that focuses on small pieces of changes, becomes
a very practical approach in software quality assurance [1].
However, due to the great amount of human involvement, how
to perform “change-based” code review (referred to as “change
review” in this paper) in timely manner is considered as a
big challenge [2]. Some commonly adopted ideas focus on
implementing tools that extract the code differences, analyze
code coverage, check code style, facilitate comments input,
and etc. Some well-known tools include CodeReviewHub1,
Gerrit2, Codecov3, CRITICS [3], and etc.

As a matter of fact, according to empirical studies from real-
life projects, apart from the above facilities, there can be much
more information to be presented by a change review tool. For
example, comprehension on change coupling relation, warns
on the risk of changes relating to defects, estimation on the
potential impact from the changes, and etc., are shown to be
of much interest to developers from industry [2], [4].

However, current tools provide little support to vividly
present such information. Therefore, in this paper, we pro-
pose a change review tool, namely, MultiViewer, to serve
the purposes. It is built for one of the most popular OSS,

∗Corresponding author.
1https://www.codereviewhub.com/
2https://code.google.com/p/gerrit/
3https://github.com/marketplace/codecov

GitHub. We formally define three metrics for a commit,
namely, Effort (costs of making the changes), Risk (closeness
to bug fixing) and Impact (correlation with other components
and influence on the entire system). MultiViewer visualizes
these information in two forms, one is Spider Chart that
provides an overview on the commit with respect to the
above three metrics. The other one is Coupling Chart. Taking
the commit under review as the centroid, Coupling Chart
depicts coupling relations: (1) among all files within the
commit; and (2) between files in and outside the commit.
We evaluate the helpfulness of MultiViewer with 10 GitHub
projects. Through comprehensive analysis, we show that the
information revealed by MultiViewer can be good indicators
to some project features.

II. METRICS: EFFORT, RISK AND IMPACT

Before introducing MultiViewer, we first define some met-
rics to quantify “Effort”, “Risk” and “Impact” of a commit.
Our metrics extend the basic definitions in [5] and take newly
added files into account.

First, we consider the most straightforward metric, “Effort”.
In this paper, we view a commit C as a set of program files
{f1, f2, . . . , fm} that have been changed in C.

Definition 1 (Effort of commit C, Effort(C)). Let LC(fi)
denote the lines of code that have been changed in fi by C.
Then, we have Effort(C) =

∑
fi∈C LC(fi).

Effort(C) aims to reveal the amount of editing work in
C, which gives code reviewers the first impression about the
changes: the larger the Effort is, the more attentions she/he
may be expected to pay.

Suppose a file f has been involved in a sequential list
of commits

−−→
C(f)=<C1, C2, . . . , Ck>, and the time stamp of

each commit in
−−→
C(f) is recorded in the file evolution history as−−−→

T (f)=<T1, T2, . . . , Tk>, where Ti is larger (i.e. later) than Tj

if i < j. Let C(f) denote {C1, C2, . . . , Ck}. Then, the number
of times that a file has been changed FC(f) is equal to |C(f)|.
A high change frequency of a file may due to various reasons.
For example, it may reveal the importance of this file to some
extent: a core module of a software may be frequently updated
because many other modules depend on it. It may also reveal
the low quality of this file: on one hand there might be too
many bugs to be fixed; on the other hand frequently changing
a file is more likely to introduce future defects.

https://www.codereviewhub.com/
https://code.google.com/p/gerrit/
https://github.com/marketplace/codecov

Intuitively speaking, newly committed changes may have
higher influence on the entire project than those remote ones
[5]. For example, changes in remote commits may have been
overridden by later commits, and files in remote commits even
may be no longer available in current version. Thus, we define
the influence strengthen of a commit as follows.

Definition 2 (Influence strengthen of commit Ci, IS(Ci)).
Let T0 denote the time stamp of current commit C0 un-
der observation. <C1, C2, . . . , Ck> are a series of commits
prior to C0 with <T1, T2, . . . , Tk>. Then, we define the
influence strengthen with respect to C0 of commit Ci as
IS(Ci)=e(Ti−T0), where Ti<T0. The earlier the commit is,
the lower its IS is.

As a reminder, to present the attenuation of influence from
remote commits, there could be numerous formats apart from
the above exponential growth to define IS(Ci). According to
our preliminary analysis, the above definition can sharpen the
distinction and better support the visualization.

Next, let us consider the risk of commits. To explicitly
represent how close a file relates to bug fixing activities, we
identify all “bug fixing commits”

−−−→
CB(f) in which the file

has been involved4, from
−−→
C(f). Let T0 denote the time stamp

of current commit C0 under observation. For any file fi∈C0

created before T0, let CB(fi)={C1, C2, . . . , Ck} represent the
set of “bug fixing commits” that fi was previously involved in.
Let LCj (fi) denote the lines of code that have been changed
in fi by Cj , and Di denote the total number of developers who
have modified fi. Then, we have the following definitions.

Definition 3 (risk of file fi, risk(fi)). The risk value of a file
is defined as risk(fi) = Di ∗

∑
Cj∈CB(fi)

(IS(Cj)∗LCj (fi)).

LCj (fi) records previous efforts made on this file for bug
fixing activities, and the influence strengthen is used as a
weighting factor. The number of involved developers indicates
the extent of concerns on those bugs. Based on this definition,
the risk value does not directly indicate the suspiciousness
of being faulty. Instead, it measures the intensity of the rela-
tionships between the file and previous bug fixing activities.
The fact that a file has been frequently involved in bug fixing
activities implies either this file is of low quality, or it is critical
to improve the quality of the entire system.

Definition 4 (Risk of commit C0, Risk(C0)). The risk of
commit C0 under observation at T0 is the sum of risk(fi) of
all files in C0: Risk(C0) =

∑
fi∈C0

risk(fi).

According to the above analysis, if a commit is with many
files of high risk(fi), it would be necessary to remind code
reviewers to pay more attention to the commit.

Finally, we want to estimate the impact of changes, where it
is essential to know how the involved files are coupling with
the entire system. Let T0 denote the time stamp of current
commit C0 under observation. If a file fi∈C0 was created
before T0, we calculate its evolutionary coupling with other
files and the entire system as follows.

4
−−−−→
CB(f) are decided via keywords matching.

Definition 5 (Evolutionary coupling between existing files
fi and fj , EC(fi, fj)). Suppose fi and fj (i6=j) were co-
changed in

−→
C =<C1, C2, . . . , Ck> at

−→
T =<T1, T2, . . . , Tk>.

And the set of these commits is denoted as C. Then,
EC(fi, fj) with respect to T0 is defined as EC(fi, fj) =∑

Ci∈C IS(Ci).

This definition is following the intuition that more frequent
and recent co-changes lead to closer coupling relation between
fi and fj .

Definition 6 (Evolutionary coupling between existing file fi
and the entire system, EC(fi)). EC(fi) with respect to T0 is
EC(fi) =

∑
fj
EC(fi, fj), where fj is any file in the system

which has been co-changed with fi for at least once.

It should be noted that apart from existing files, a commit
may also create new files, which have no historical co-change
information, thus EC(fi) is not applicable. For these cases,
we calculate the dependent coupling between the new file and
the entire system as follows.

Definition 7 (Dependent coupling between new file fi and
the system, DC(fi)). DC(fi) with respect to T0 is defined
as DC(fi) =

∑
fj
EC(fj), where fj is any file in the system,

which has dependent relation with fi. In this paper, we identify
dependence between files by checking “import declarations”
in a source file.

With the above two definitions, we measure the impact of
a commit as follows.

Definition 8 (Impact of commit C0 at T0, Impact(C0)).
Impact(C0) is the sum of EC(fold

i) and DC(fnew
i) of

all files in C0: Impact(C0) =
∑

fold
i ∈C0

EC(fold
i) +∑

fnew
i ∈C0

DC(fnew
i), where fold

i is the existing file before
C0, and fnew

i is the new file created by C0.

III. MULTIVIEWER: VISUALIZATION OF COMMITS

We implement MultiViewer for one of the most popular
OSS, GitHub, to visualize the above metrics via Spider Chart
and Coupling Chart.
1) The Spider Chart has three spokes, which represent “Ef-
fort”, “Risk” and “Impact” for a given commit. The data length
of each spoke is proportional to the original value relative to
the maximum value across all samples of the corresponding
metric. Figure 1 shows a sample Spider Chart for commit
#371e86 for project “commons-lang”, whose “Risk” value is
reaching the maximum; while the “Impact” and “Effort”values
are very close to the maximum. This Spider Chart provides
a preliminary overview of the commit. For a more detailed
inspection, we present the Coupling Chart.

Fig. 1. Sample Spider Chart of Commit #371e86 in Repo “commons-lang”

2) The Coupling Chart takes the commit under review (C0)
as the centroid, and depicts change coupling relations: (1)
among all files within the commit; and (2) between files in
and outside the commit. Figure 2 shows a sample Coupling
Chart for commit #371e86 of project “commons-lang”.

Fig. 2. Sample Coupling Chart of Commit #371e86 in Repo “commons-lang”

Each node in the chart represents a file that is directly involved
in or related to C0. There are three features for a node.
• Aureole. Each node has aureole in orange or gray, where

orange color means that the node (file) belongs to the current
commit C0 and gray color indicates that the node (file) is
not directly involved in C0 but has evolutionary coupling
with at least one file in C0.

• Size. Nodes in the chart have different sizes, where a larger
circle means more frequent changes on the file. Specifically,
we have size of node=FC(f)+15.

• Color. The color of a node represents the risk of the file,
i.e. risk(f). MultiViewer defines a linear scale that maps
the domain of risk values [0,Max] to the range of color
[“green”, “red”].

Each edge that links two nodes fi and fj , reveals the coupling
strengthen between them: the length of the edge equals to
1/EC(fi, fj). In other words, any two linked nodes indicate
their previous co-changing. The closer they are from each
other, the more frequent co-changes they have encountered.
As a reminder, according to our experience, files that are
indirectly coupled with each other have their correlations
decreased gradually. Therefore, MultiViewer only explores for
files directly coupled with the changed files.
To summarize, Coupling Chart focuses on a changeset, visu-
alizing its correlation with other relevant files. By navigating
these relevant files, developers can better comprehend the
changes and estimate their ripple effect on the entire system.
For example, Figure 2 shows that there are 31 files involved
in this commit. This number of changed files is fairly high
among all commits of this project. This explains the high Effort
(close to the maximum) in Figure 1. And there is one big red
node framed by a red rectangular, which indicates that this

5We add 1 to FC(f) because FC(f) for a newly created file is 0.

file has been involved in many bug fixing commits previously.
Actually, the risk value of this file contributes a lot to the Risk
value of the entire commit in Figure 1. This reminds code
reviewers to pay more attention on it. It can also be found
that files in this commit are coupling with many other files of
the system (e.g. node clusters in gray frames), which leads to
high Impact values in Figure 1.

IV. EVALUATION

We are interested to evaluate the helpfulness of Multi-
Viewer. But as a preliminary analysis, we decided to put
comprehensive end-user studies in our future work. In this
paper, we investigate whether MultiViewer can reveal any
interesting patterns for a commit, such that users can quickly
identify some important features by being presented with a
figure. In particular, we focus on “group of developer”, “type
of commit” and “popularity of project”, because these features
are generally important in review task assignment. We want
to address the following research questions:
• RQ1: How changes committed by different groups of

developers (authors) distinguish from each other with
respect to Effort, Risk and Impact. As an open-source
community, most projects on GitHub accept contributions
from both Internal and External authors. So, here we in-
vestigate how typical Spider Charts from different groups
of authors look like and whether the project popularity
affects the observations.

• RQ2: How different types of commits distinguish from
each other with respect to Effort, Risk and Impact. In
projects of GitHub, commits are made for various pur-
poses. So, here we investigate how typical Spider Charts
of each type look like and whether the project popularity
affects the observations.

A. Data Preparation

1) Project selection. We first picked up all Java projects with
over 3K commits and at least 200 stars and forks on GitHub.
By ranking these projects according to their starred numbers,
we selected the top five and the bottom five projects, such
that they show high diversity in the popularity. Information
for these projects is shown in Table I6.
2) Raw data cleaning. Before the analysis, we processed data
cleaning. We first combined commits with the same author and
log message within a short period7. This is because that there
usually exist a sequence of commits with respect to the same
task (e.g. to address one issue in a pull-request, a developer
may submit multiple commits where the later ones supplement
the earlier ones). Secondly, we excluded all “Merge” commits,
which contain no changing information but only serve as the
heading nodes in three-way merging actions. This filtering
process can also help to avoid confusion due to the difference
between “committer” and “author”.
3) Author group. We divided authors into two groups,
namely “Internal” and “External” authors. An author is labeled

6Data were collected on May 20, 2017.
7In this experiment, we set the period as 24 hours.

TABLE I
SELECTED PROJECTS

Project Commit Dev Star Fork Function

BIMServer 3637 15 268 203
Building Information
Modelserver

Buck 11123 249 4696 722
A fast
build system

Commons-
lang

4988 84 960 596
Java libraries for
manipulation of
Java core classes

Druid 5113 77 6405 3092
A database
connection pool

Graphhopper 2990 49 1198 518
A route planning
library and server

Hadoop 15993 98 3302 3144
A framework dealing
with large data sets

Jackson-
databind

3995 109 1274 552
General data-binding
package for Jackson

Nutch 2284 24 1188 850 A search engine
Realm-
Java

7012 66 7736 1215 A mobile database

Spring-
Framework

14739 218 14152 10431
A coupling
optimization framework

as “Internal” if she/he belongs to the organization that owns
the project; otherwise, she/he is an “External” author.
4) Commit type. We considered seven major types of com-
mits, namely “Cleanup” for deleting code (CLN), “Improve-
ment” for improving performance (IMP), “JavaDoc” for in-
puting documents (DOC), “Configuration” for configuring the
project (CONFIG), “Defect” for fixing bugs (DEF), “Feature”
for implementing features (FEATURE) and “Test” for testing
code (TEST). We searched for keywords in the commit
message to identify its type. For example, keywords for type
DEF are “bug|fix|error|fail|leak|correct|IssueNumber”.
5) Project popularity. We divided the 10 projects into two
groups, namely Popular and Niche projects, according to their
Starred and Forked numbers. Specifically, projects with “Star”
higher than 3000 and “Fork” higher than 600 are considered
as Popular; otherwise, Niche8. Accordingly, we have Buck,
Druid, Hadoop, Realm-Java and Spring-Framework as Popular
projects; and have the rest five as Niche projects.

B. About the Author Group (RQ1)

We divided all commits into four groups: G1 is from
Popular projects and External authors; G2 is from Popular
projects and Internal authors; G3 is from Niche projects and
External authors; and G4 is from Niche projects and Internal
authors. In order to address RQ1, we first identified the
representative commits of each group. Within each Gi, we
ran clustering algorithm KMeans on all commits9. We found
that in each group, there is a cluster that gathers over 50%

8We set these thresholds according to some general experiences and the
actual distributions on these values of the 10 projects.

9k is set as 6 based on our preliminary experiments, to make each cluster
cohesive.

of all commits of the group. Specifically, the percentage in
G1 is 71.3%, in G2 is 70%, in G3 is 51% and in G4 is
59.2%. We picked up the centroid of the largest cluster as
the representative commit of the corresponding group, whose
Spider Charts are shown in Figure 3.

Fig. 3. Typical Spider Charts for Different Groups of Authors

To further explain these observations, we adopted “density
map” to visualize the distribution of “Effort”, “Risk” and
“Impact” in different groups, as shown in Figure 4. The left
sub-figure compares “Effort”, “Risk” and “Impact” between
G1 and G2; while the right sub-figure presents the comparison
between G3 and G4. We divided the logarithmic values of
all commits into 10 sub-ranges, where Range i represents
values in [i − 1, i) where 1 ≤ i ≤ 9; Range 9+ represents
values in [9,∞). The darkness in each block indicates the
ratio of commits within the corresponding sub-range among
all commits of the same category: the darker the color is, the
higher ratio it is.

Fig. 4. Comparison Between “Internal” and “External” Authors

From Figure 4, we can find that in Niche projects, External
authors tend to make small commits (i.e. low Effort) than
Internal authors. In contrast, Popular projects present opposite
situation. And for Risk, in Popular projects, commits from
Internal authors are more likely to have very low “Risk”
values than those from External authors. And External authors
also contribute high percentage of commits with very large
Risk. But different comparison results can be found in Niche
projects. Finally, comparison on Impact presents similar results
as the above. We also conducted a Wilcoxon-Mann-Whitney
test with significant level of 0.05, which give consistent
conclusion with the observations.

To summarize, we have addressed RQ1: In both Popular
and Niche projects, typical Spider Charts for commits from
Internal and External authors look quite different. And the
relation between commits from Internal and External authors
in Popular projects is opposite to that in Niche projects. In

Popular projects, Internal authors make commits with lower
Effort, Risk and Impact values than External authors. And in
Niche projects, the conclusion is opposite.

C. About the Commit Type (RQ2)

Similar to RQ1, we first identified typical commits for each
of the seven types, in both Popular and Niche projects, and
their typical Spider Charts are shown in Figure 5.

Fig. 5. Typical Spider Charts for Different Types of Commits

To further explain these observations, we presented distri-
butions of the three metrics for different commit types, in
Popular and Niche projects, as shown in Figures 6 to 8.

Fig. 6. Comparison on Effort

Fig. 7. Comparison on Risk

Fig. 8. Comparison on Impact

Figure 6 shows that in both Popular and Niche projects,
Effort appears quite differently among the seven types of
commits. For example, in Popular project, “Feature” and
“Improvement” commits are more likely to involve high Effort;
while “Defect”, “Config” and “JavaDoc” commits generally
require very low Effort. Niche projects show similar compar-
ison results.

For Risk, in Figure 7, the top-2 darkest blocks at “Range 1”
are “JavaDoc” and “Test”, which indicate that these two types
generally involve files not close to previous bug fixing. This is
mainly because that these commits usually require more new
file creation than existing file modification. In both Popular
and Niche projects, “Defect” commits show polarization on
their Risk values, which discloses two major types of defect-
fixing commits: (1) Low Risk values are from commits where
the corresponding bug fixing activities mainly rely on adding
new files (i.e. patches). These newly added files obviously
have no historical “bug fixing” records. According to the
definition, Risk of these commits are very low. (2) High Risk
values are from commits where the corresponding bug fixing
activities mainly involve modifying files appeared frequently
in previous “bug fixing” commits, thus these commits have
high Risk values. The second case shows that files that have
been frequently changed for bug fixing are very likely to be
involved in new bugs. This observation suggests that our Risk
metric can reflect potential risk of being faulty or introducing
faults to some extent.

Finally, in Figure 8, Impact values of commits in all the
seven types from both Popular and Niche projects present
centralization at middle-level of ranges. This is somewhat
anti-intuition: we have expected that “Defect” and “Feature”
commits show obviously high densities at high ranges; while
other types have more commits with lower Impact. The reasons
will be investigated in our future works.

To summarize, we have addressed RQ2: Different types
of commits show quite different distributions of their Effort,
Risk and Impact, but comparison among different commit
types does not show significant difference between Popular
and Niche projects. “Feature” and “Improvement” have high
Effort in both Popular and Niche projects; and “Defect” is
distinguishable with its high Risk, in both types of projects.

D. Threats to Validity

• The primary threat to internal validity is about the
correctness of MultiViewer and our experiment platform.
In order to assure the quality of our implementations,
we have conducted thorough testing to improve their
reliability and trustworthiness.

• The primary threat to external validity is the repre-
sentative of our results acquired from 10 projects on
GitHub. Though the number of projects is not very
large, we selected them with high diversity, in order
to distinguish them and provide relatively good repre-
sentativeness. Moreover, we have carefully investigated
the rationales behind our observations. Due to the space
limitation, we leave this analysis in our follow-up studies.

• The primary threat to construct validity is about the
metrics for characterizing a commit. Actually, these met-
rics were defined under commonly accepted intuitions
and some in-depth inspections on the data verified their
plausibility. In our future studies, we will further refine
the metrics for advanced facilities.

V. RELATED WORKS

Code review is an important method for software quality
assurance. One research direction is to recommend reviewers
whose background and skills well match the task [6]–[10].
Other code review assistance includes extracting the code
differences, decomposing a large set of tangled changes into
small pieces for easier review [11], [12], prioritizing changes
for better resource allocation [13], etc. However, as indicated
by real-life case studies, disclosing file correlations and pre-
senting change impact are required by code reviewers, which
receive little support from current tools [2], [4], [14], [15].

In fact, Change Impact Analysis (CIA), as a classic research
area in software engineering has been studied for many years.
Based on various coupling metrics [5], [16], the major task of
CIA is to identify a group of co-changed files. Zimmermann
et al. proposed ROSE by mining frequent patterns to achieve
this goal [17]. Similar studies can be found in [18], [19].
There were also studies for visualizing coupling relations for
a project [20]–[22].

As a reminder, the above CIA studies have different pur-
poses with ours, and the visualization techniques are targeted
at the entire system. In contrast, MultiViewer focuses on a very
small portion of the entire source code, and provides “Just-
In-Time” coupling and impact visualization with concise and
essential information for code change review.

VI. CONCLUSIONS AND FUTURE STUDY

In this paper, we defined metrics for code changes, which
reveal coupling relations among related files in the changes,
as well as estimate the change effort, risk and impact. We
also provided a change review assistance tool for GitHub,
namely, MultiViewer to visualize such information in Spider
Chart and Coupling Chart. We demonstrated the helpfulness
of MultiViewer by showing its ability as indicators to some
important project features.

Our method synthesizes several major techniques in CIA,
with tailoring to adapt to our application scenarios. In our
future studies, we will further improve MultiViewer from
various aspects, such as change completeness checking, defect
prediction, and etc. More importantly, a comprehensive end-
user evaluation on how well MultiViewer works in real-
life development will be conducted. Feedbacks from human
studies will be collected to improve the tool.

ACKNOWLEDGMENTS

This paper is partially supported by the National Natural
Science Foundation of China (Grant No. 61572375, 61472286
and 61502345).

REFERENCES

[1] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A Faceted Classifi-
cation Scheme for Change-Based Industrial Code Review Processes,” in
Proceedings of the 2nd International Conference on Software Quality,
Reliability and Security, 2016, pp. 74–85.

[2] L. MacLeod, M. Greiler, M. A. Storey, C. Bird, and J. Czerwonka,
“Code Reviewing in the Trenches: Understanding Challenges and Best
Practices,” IEEE Software, vol. PP, no. 99, pp. 1–1, 2017.

[3] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive Code Review
for Systematic Changes,” in Proceedings of the 37th International
Conference on Software Engineering, 2015, pp. 111–122.

[4] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How Do Software En-
gineers Understand Code Changes?: An Exploratory Study in Industry,”
in Proceedings of the 20th International Symposium on the Foundations
of Software Engineering, 2012, pp. 51:1–51:11.

[5] M. D. Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in Proceedings of the 16th
Working Conference on Reverse Engineering, 2009, pp. 135–144.

[6] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 35th International Conference on Software
Engineering, 2013, pp. 931–940.

[7] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer Recommender
of Pull-Requests in GitHub,” in Proceedings of the 30th International
Conference on Software Maintenance and Evolution, 2014, pp. 609–612.

[8] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. i. Matsumoto, “Who should review my code? A file location-
based code-reviewer recommendation approach for Modern Code Re-
view,” in Proceedings of the 22nd International Conference on Software
Analysis, Evolution, and Reengineering, 2015, pp. 141–150.

[9] A. Ouni, R. G. Kula, and K. Inoue, “Search-Based Peer Reviewers
Recommendation in Modern Code Review,” in Proceedings of the 32nd
International Conference on Software Maintenance and Evolution, 2016,
pp. 367–377.

[10] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically Recommending
Peer Reviewers in Modern Code Review,” IEEE Transactions on Soft-
ware Engineering, vol. 42, no. 6, pp. 530–543, 2016.

[11] K. Herzig and A. Zeller, “Untangling changes,” 2011, available:
https://www.st.cs.uni-saarland.de/publications/files/herzig-tmp-
2011.pdf.

[12] Y. Tao and S. Kim, “Partitioning Composite Code Changes to Facilitate
Code Review,” in Proceedings of the 12th Working Conference on
Mining Software Repositories, 2015, pp. 180–190.

[13] E. v. d. Veen, G. Gousios, and A. Zaidman, “Automatically Prioritizing
Pull Requests,” in Proceedings of the 12th Working Conference on
Mining Software Repositories, 2015, pp. 357–361.

[14] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer Re-
view Practices,” in Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 202–212.

[15] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges
of Modern Code Review,” in Proceedings of the 35th International
Conference on Software Engineering, 2013, pp. 712–721.

[16] R. Robbes, M. Lanza, and M. Lungu, “Logical coupling based on
fine-grained change information,” in Proceedings of the 15th Working
Conference on Reverse Engineering, 2008, pp. 42–46.

[17] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in Proceedings of the 13th International Workshop
on Principles of Software Evolution, 2003, pp. 73–73.

[18] F. Jaafar, Y. G. Gueheneuc, S. Hamel, and G. Antoniol, “An exploratory
study of macro co-changes,” in Proceedings of the 18th Working
Conference on Reverse Engineering, 2011, pp. 325–334.

[19] M. Mondal, C. K. Roy, and K. A. Schneider, “Improving the detection
accuracy of evolutionary coupling by measuring change correspon-
dence,” in Proceedings of IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, 2014, pp. 358–362.

[20] D. Beyer and A. Noack, “Clustering software artifacts based on frequent
common changes,” in Proceedings of the 13th International Workshop
on Program Comprehension, 2005, pp. 259–268.

[21] D. Beyer, “Co-change visualization,” in Proceedings of the 21st Inter-
national Conference on Software Maintenance, 2005, pp. 89–92.

[22] M. D. Ambros, M. Lanza, and M. Lungu, “Visualizing co-change
information with the evolution radar,” IEEE Transaction on Software
Engineering, vol. 35, no. 5, pp. 720–735, 2009.

	Introduction
	Metrics: Effort, Risk and Impact
	MultiViewer: Visualization of Commits
	Evaluation
	Data Preparation
	About the Author Group (RQ1)
	About the Commit Type (RQ2)
	Threats to Validity

	Related Works
	Conclusions and Future Study
	References

