
24    IEEE Computational intelligence magazine | may 2017� 1556-603x/17©2017ieee

Abstract—Which test cases should be selected to save the time 
of software testing? Due to the large time cost of running all test 
cases, it is necessary to run representative test cases to shorten the 
software development cycle. Test suite reduction, an NP-hard 
problem in software engineering, aims to select a subset of test 
cases to reduce the time cost of test execution in satisfying test 
requirements. Recently, search based software engineering 
provides a new direction to test suite reduction by connecting 
software engineering problems with computational intelligence 
methods. In this paper, we propose a multi-level optimization 
algorithm to simplify the original problem instance of test suite 
reduction. In each level, we search for local optimal solutions 
with random walk in potential subsets of the test suite. The 
problem scale is reduced by locking the intersection of local 
optima and by discarding shielded test cases with no con
tribution to test requirements. We compare our algorithm with 
state-of-the-art methods on test suites of ten large-scale open 
source projects. Experiments show that our algorithm can more 
efficiently find optima on five out of six projects, in which 
Integer Linear Programming (ILP) can find optima; for the 
other four projects that ILP fails to solve, our algorithm provides 
the best solutions among heuristics in comparison.

I. Introduction

Software testing is important and time-consuming. A test 
suite, i.e., a set of test cases, plays a key role in validating 
the expected program behavior. In modern test-driven 
development, a test suite pushes the development prog-

ress. Software evolves over time; its test suite is executed to 
detect whether a new code change adds bugs to the existing 
code. Executing all test cases after each code change is unnec-
essary and may be impossible due to the limited development 
cycle. On the one hand, multiple test cases may focus on an 
identical piece of code; then several test cases cannot detect 
extra bugs. On the other hand, even executing a test suite 
once in a large project takes around one hour [1]; frequent 
code changes require much time for conducting testing. For 
instance, in Hadoop, a framework of distributed computing, 
2,847 version commits are accepted within one year from 
September 2014 with a peak of 135 commits in one week [2].

Which test cases should be selected to save the testing time? 
Test suite reduction aims to minimize the number of executed 
test cases to cover all test requirements. Test requirements are prac-
tically viewed as code coverage. For instance, statement coverage, 
i.e., the ratio of covered statements during test execution, is the 
most common test requirements in real-world development [3].
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Test suite reduction, also called test suite minimization in 
some literature [3], is one of the typical fields in search based 
software engineering [4]. The development of search based 
software engineering bridges the gap between software engi-
neering problems and computational intelligence methods. 
Well-designed heuristics in computational intelligence can be 
employed or transformed to address optimization problems in 
software engineering. This expands the application of the 
research in computational intelligence.

Application scenario of test suite reduction. Test suite 
reduction is inevitable for continuous development and testing. 
Test suite reduction provides a subset of test suite without los-
ing pre-defined test requirements. After each code change, the 
reduced test suite is executed to detect potential bugs, i.e., 
ensuring that no bug is newly involved during continuous 
code changes.

The test suite reduction problem is formulated as the unic-
ost set covering problem (the “unicost” is omitted for short) [5], 
which is one of the Karp’s 21 NP-complete problems [6]. To 
find a minimized test suite, many algorithms are designed, 
including heuristics [7] and exact algorithms like Integer Linear 
Programming (ILP) [8], [9]. As an exact method for the set 
covering problem, ILP can find global optima for test suite 
reduction, but may be expensive in time cost and computing 
resources. Heuristics can find a near-optimal solution, but there 
is large room to improve the solution.

In this paper, we propose MultiWalk, a Multi-level ran-
dom Walk algorithm for software test suite reduction. Multi-
Walk leverages the common part of local optima by random 
walk search to simplify the original problem instance, where 
the common part (i.e., the intersection) of local optima is 
referred to as the “backbone”. In each level of MultiWalk, we 
search for local optimal solutions with random walk in poten-
tial subsets of the test suite. The problem scale is iteratively 
reduced by locking the backbone and by discarding shielded 
test cases, which contribute to no test requirements in the test 
suite. MultiWalk repeats extracting the backbone and reducing 
the scale for multiple times until a small problem is achieved. 
A solution to this small problem is combined with the back-
bones to refine the final solution to the original problem. 
Hence, in MultiWalk, the process of finding a minimized test 
suite is converted into finding backbones and refining the 
final solution.

Experiments are conducted on ten widely-used and large-
scale open source projects in Java. Each project is instrumented 
to collect runtime traces and to record the statement coverage. 
We compare MultiWalk with five state-of-the-art heuristics, 
the exact method ILP, and random walk without the multi-
level strategy. Experimental results show that MultiWalk can 
find optima within less time for five out of six projects that ILP 
can solve; meanwhile, MultiWalk can obtain better solutions 
than the state-of-the-art heuristics for projects that ILP fails to 
solve before timeout. To further understand MultiWalk, we 
investigate its ability of test suite reduction in three directions, 
i.e., the similarity between local and global optima, the change 
of backbone scales with the number of local optima, and the 
ability of problem scale downgrading with levels.

II. Software Test Suite Reduction Problem
Given a test suite ,T T n=^ h  i.e., a set of test cases, and a set 
R  of test requirements | | ,R m=^ h  let A be the runtime coverage 
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where x j  indicates whether a test t Tj !  is selected in the 
reduced test suite. This problem has the same model as the set 
covering problem, which is already proved as NP-complete [6]. 
The above model of test suite reduction can be specialized via 
abstracting domain knowledge, such as on-demand requests [10] 
and abilities of fault localization [11]. In this paper, we address 
the general model above, whose extension will be discussed in 

Section VI. For test suite reduction, ILP can 
exactly solve small-scale instances, while deal-
ing with large-scale instances with ILP may 
be practically impossible [12].

In practice, test requirements in R  are a 
type of test criterion that indicates software 
quality. Code coverage, measuring how much 
code is executed by the reduced test suite, is 

the most common criterion of test requirements. Informally, the 
test suite reduction problem is to select a minimized subset of 
test cases, which cannot lose the statement coverage, comparing 
with the original test suite. Note that besides statement coverage, 
fault detection capability and program mutation scores can also 
serve as test requirements [13]. However, collecting these 
requirements for large projects is complex and time-consuming. 
In this paper, we evaluate test suite reduction via statement cov-
erage (i.e., how many statements are executed by test cases), 
which is widely-used in most of related work of test suite 
reduction [7], [8].

Ideally, ILP can find optimal solutions to test suite reduction 
if the computing resource is unlimited. However, for large soft-
ware projects, only focusing on the optimal solutions with ILP 
may be infeasible. Hence, many heuristics are developed to effi-
ciently finding sub-optimal solutions. For instance, a pioneering 
heuristic, GRE by Chen and Lau [14] extends the greedy algo-
rithm by removing redundancy between two unselected test 
cases; a state-of-the-art meta-heuristic, RAPS by Lan et al. [15] 
finds solutions via the technique of meta-heuristics for ran-
domized priority search.

Motivated by the trade-off between ILP and heuristics, we 
design a new algorithm to downgrade the problem scale and to 
find solutions for small ones. Our algorithm leverages random 
walk on the selection of test cases; then the common part of 
solutions by random walk is locked to further reduce the prob-
lem scale.

III. Multi-Level Random Walk
To reduce the problem scale of test suite reduction for large 
projects, we design MultiWalk, a Multi-level random Walk 
algorithm. The reduction of problem scales is based on locking 
the intersection of local optima by random walk search. For the 
sake of simplification, a solution S of test suite reduction is 
viewed as a subset of the original test suite, i.e., .S T3

A. Multi-Level Strategy
Since it is hard to directly solve an original problem of test 
suite reduction, we intend to solve small sub-problems instead. 
Our idea, motivated by Walshaw [16], is to conduct multiple 
levels of sub-problems by locking several tests. The multi-level 
strategy consists of two major stages, the reduction stage that 
reduces the problem scales and the refinement stage that com-
bines solutions in multiple levels.

To obtain a solution similar to (or even the same as) an 
optimal solution, an ideal way is to lock tests that belong to 
the optimal solution. We leverage the concept of “backbone” 

Algorithm 1 MultiWalk, a multi-level random walk algorithm  

for test suite reduction.

    Input:
   �  , ,T R1 1G H  an original problem instance with a test suite T1  

and a requirement set ;R1

    ,s  a local search operator;
    ,a  the maximum number of levels;
    ,b  the number of local optima in each level.
    Output:
    ,S1  a solution to the original instance , .T R1 1G H
  1 for Level , ,k 1 f a=  do
  2  �  find a set ofkT b  local optima to the instance ,T Rk kG H  

by the local search operator ;s
  3    collect a backbone ;k k+d D=

  4    collect requirements covered by ,kd  ( )Coverk kx d= ;
  5    reduce the instance, ,\T Tk k k1

0 d=+  ;\R Rk k k1 x=+

  6    collect a shielded test set ( , );T RShieldk k k1
0

1{ = + +

  7    discard tests in , \T Tk k k k1 1
0{ {=+ + ;

  8 end
  9 count the actual number c  of levels ;#c a^ h

10 �find selected tests S 1c+  for the smallest instance 
,T R1 1G Hc c+ +  by ;s

11 for Level , ,k 1fc=  do
12    refine selected tests, ;S Sk k k1 , d= +

13 end

A test suite is iteratively developed together with the 
source code to find software bugs in the early stage. 
This follows a modern development process, called 
test-driven development. 
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[17], [18] that is defined as the common part of optimal solu-
tions. In the context of test suite reduction, a backbone is a 
subset of the whole test suite. Since it is hard to find optimal 
solutions of an NP-hard problem, the backbone is practically 
replaced by the approximate backbone, which is the inter-
section of local optimal solutions [19], [20]. We use the term 
“backbone” to denote “approximate backbone” for short. In 
this paper, random walk search is employed to find local opti-
ma of test suite reduction and then collect the backbone based 
on these local optima.

Algorithm 1 presents the overview of MultiWalk. At Lines 1 
to 8, MultiWalk reduces a problem instance for multiple times by 
locking the backbone based on local search; at Line 9, the actual 
number of levels is counted; then at Line 10, a solution to the 
reduced instance is obtained; at Lines 11 to 13, the solution to the 
small instance and the backbones are combined to form the final 
solution to the original problem instance.

In each level of instance reduction, 
tests in the backbone (Line 5) are select-
ed as a part of the final solution while 
tests that are shielded by other tests 
(Line 7) are discarded from the final 
solution. A shielded test case denotes a 
non-selected test case, whose covered 
statements are covered by another test 
case. We discard shielded test cases since 
it cannot benefit the statement coverage 
but adds the size of executed tests.

B. Backbone and Shielded Tests
A backbone in test suite reduction is a 
potential test component, which is possi-
ble to be abstracted to improve the 
design of the test suite [21]. The size of a 
backbone depends on the number of 
local optima as well as the ability of the 
local search operator [22], [23]. In gen-
eral, any local search technique can be 
embedded in the multi-level algorithm. 
An experiment in Section V-B will 
later show that local optima by WalkTest 
are similar to the global optimal solution.

In contrast to the backbone that is 
locked to conduct the final solution, 
shielded test cases are discarded to avoid 
the redundancy in solutions. Once a test 
case is shielded by others, it cannot con-
tribute to adding statement coverage. 
Since our multi-level strategy reduces 
the problem instances for several times, 
shielded test cases can be removed after 
obtaining the backbone in each level. 
An experiment in Section V-B will 
illustrate that discarding shielded test 
cases will effectively reduce the problem 

scale. Note that in one level of MultiWalk, an empty backbone 
or no shielded test does not break the algorithm. MultiWalk 
can skip this level and directly go to the next level since Multi-
Walk is an iterative procedure.

Fig. 1 illustrates the roles of backbones and shielded test cases 
with an example of two-level reduction and refinement in Mul-
tiWalk. The original problem instance with seven tests is reduced 
to two smaller instances; a solution to the reduced instance is 
combined together with two backbones as the final solution.

C. Random Walk Search, WalkTest
Many local search operators can be embedded into MultiWalk. 
In this section, we design a new local search based on random 
walk, which is motivated by the success of random walk 
techniques in the SAT problem, i.e., WalkSat [24]–[26]. 
The  random walk in WalkTest provides the diversification of 
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Figure 1 Illustration of test suite reduction on seven test cases and over seven requirements 
(only seven requirements are shown). Two-level reduction and refinement is conducted before 
finding the final solution. (a) The first level reduction. A backbone of tests t1 and t6 is selected; 
requirements r2 and r7 are satisfied. Then in the reduced instance, a test t5 is shielded by t2 or t3. 
(b) The second level reduction. In the reduced instance after the first level, a backbone of a test t3 
is selected; requirements r3 and r5 are satisfied. Then in the reduced instance, a test t2 is shielded 
by t7. (c) Solving the small instance after the second level and conducting two-level refinement.
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solutions; in this case, greedy algorithms are not suitable for 
collecting backbones.

Fig. 2 illustrates the major steps of our random walk opera-
tor, called WalkTest. The nature of random walk is to randomly 
traverse the search space of an instance; a random walk operator 
guides such traversal by designing the moves, which are led by a 
pre-defined probability .p  In our case, WalkTest makes greedy 
moves with p  and random moves with ;p1-  the iterative pro-
cess in WalkTest is expected to fit the noisy search space [27].

WalkTest starts with randomly generating a solution to test 
suite reduction. Then a number of tries are conducted to find a 
local optimum. In each try, WalkTest first collects zero-hurt 
tests. A zero-hurt test is a selected test, which could be removed 
without losing statement coverage. That is, this test case is 
redundant to the reduced test suite. If zero-hurt test exists, one 
of such tests is removed from the solution; if not, WalkTest pro-
ceeds according to a given probability .p  With a probability ,p  
a non-selected test that can add the most covered statements 
will be selected in the solution; with ,p1-  one of non-select-
ed tests is randomly added to the solution. WalkTest continu-
ously manipulates the solution until the maximum number of 
tries reaches.

We choose WalkTest to find the local optima since it is 
simple in design. WalkTest shares the similar strategy with 
many existing heuristics. For instance, the design of random 
walk in WalkTest relates to simulated annealing algorithms 
[28]. We list major differences between WalkTest and simulated 
annealing in three categories. First, simulated annealing 
accepts the best solution during its iteration while WalkTest 
randomly accepts one of improved solutions. Second, simulat-
ed annealing chooses a worse solution based on an acceptance 
probability while WalkTest updates a worse solution based an 
acceptance probability. Third, the acceptance probability in 

simulated annealing decreases during the iteration while the 
one in WalkTest is constant.

IV. Experimental Setup
We describe the dataset of test suite reduction in our experi-
ments and algorithms in comparison.

Online Resource for MultiWalk Experiments:
http://cstar.whu.edu.cn/p/multi-walk/
�Supplementary materials of experiments and the dataset 
are publicly available.

A. Data Preparation
Table 1 lists ten large Java open source projects in our study. All 
these projects are widely-used and original test suites are provid-
ed together with the source code. In each project, the test suite 
is organized with the Java test framework, JUnit, which helps to 
automate the data collection below. Table 2 shows the number 
of tests and requirements of these ten projects. The size of test 
cases in each project ranges from 908 to 6,196 while the median 
of satisfied requirements per test ranges from 19 to 1,529.

To collect the runtime statement coverage between each 
test case and each statement, we configure and execute all proj-
ects as following steps. First, for each project, we manually con-
figure the project according to its document. Source code and 
test code are locally compiled and executed to confirm that 
the whole test suite can pass the execution. Second, we instru-
ment the source code to record whether each statement is 
executed, i.e., the aij  value for a requirement ri  and a test ;t j  
meanwhile, we instrument the test code to identify which test 
case is executed during runtime. Third, based on the instru-
mentation, we run the project to record the satisfaction between 
tests and requirements. Before experiments, the above runtime 

collection is conducted for all projects 
and the resulted dataset is employed as 
the input of algorithms in comparison.

B. Algorithms in Comparison
We compare our proposed algorithm 
MultiWalk with seven other algo-
rithms during experiments, ILP, GRE, 
HGS, RAPS, RWLS, GA, and Walk-
Test. As mentioned in Section II, ILP 
is an exact method, which may fail to 
find a solution due to the limited time. 
GRE [14] and HGS [29] are two ty
pical heuristics for solving test suite 
reduction. GRE is an extended version 
of the greedy algorithm, which can fast 
find a near-optimal solution; HGS is a 
pioneering algorithm of test suite 
reduction and is designed based on 
manual analysis of test suites. RAPS 
[15] and RWLS [30] are two state-of-
the-art heuristics for the set covering 

Generate a Random Solution

Do
Zero-Hurt Tests Exist?

Collect Zero-Hurt Tests

Randomly
Remove a

Zero-Hurt Test Add a Test that
Newly Covers

the Largest Number
of Test Requirements  

Flip a Coin
for the Probability p  

Randomly Add a
Test that Was
Not Selected

Yes

No

p
1–p

Iteration

Figure 2 Flow diagram of main steps in WalkTest.
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problem. RAPS is a meta-heuristic via randomized priority 
search; RWLS is an efficient search algorithm via weighting 
rows in the set covering model. GA [31] is a widely-used pop-
ulation-based algorithm in evolutionary computation. In addi-
tion, to show the effectiveness of the multi-level strategy in 
MultiWalk, we also show the results by WalkTest with multi-
restart (WalkTest for short).

Experimental platform. All the experiments run on a 
PC with Intel Core 3.6 GHz CPU, 4GB memory, and Ubuntu 
12.04. The code instrumentation for the runtime coverage col-
lection [32] is implemented with a Java analysis framework, 
Spoon 4.0 [33]. Among the algorithms under evaluation, we 
call ILP with an off-the-shelf linear programming tool, lp_
solve 5.5 [34]. We implement all the other algorithms in Java 
JDK 1.7.

V. Experimental Results
We evaluate our algorithm on ten large real-world Java open 
source projects; meanwhile, an exact algorithm, ILP, and six 
heuristics are employed in comparing the size of tests after test 
suite reduction and the time cost.

A. Test Suite Reduction on Real-World Projects
Our proposed algorithm, MultiWalk, is compared with seven 
algorithms in this section. We setup algorithms in use as fol-
lows. The timeout of each algorithm is set to two hours 
(7,200 seconds). All the heuristics are executed for 30 times to 
obtain the average values; the random seed is the timestamp 
of the system clock. In WalkTest, the probability p  is set to 
0.5; 10000 tries are used to obtain local optima. In WalkTest 
with multi-restart, WalkTest is restarted for 100 times to 
achieve the best solution. In MultiWalk, WalkTest without 
restart is used as the embedded local search operator ;s  the 
maximum number of levels is set to 20a =  and the number 
of local optima in each level is set to .10b =  Further ex
periments in Section V-B will show the sensitivity to a  and 
b  in MultiWalk.

Table 3 shows both the test suite size after reduction and 
the time cost of running algorithms. In these experimental 
results, MultiWalk can obtain the best-known solutions on 
nine out of ten projects. One exception is the project Camel, 
which is the smallest project under consideration. ILP, as well as 
HGS, RAPS, and RWLS, can obtain the optimal solution on 

Table 1 Description of ten large-scale real projects.

Project Full name with version Project description 

Camel Apache Camel Core 2.15 A versatile framework based on enterprise integration patterns

AssertJ AssertJ Core † An assertion enhanced framework for Java testing 

Configuration Apache Commons Configuration 1.10 A generic configuration interface of reading configuration data

JGit JGit † A Git interface from Java programs 

Closure Google Closure Compiler † A fast compiler for Javascript 

Collections Apache Commons Collections 4.0 An enhanced library for Java collections 

JFreeChart JFreeChart 1.0 A library for professional quality charts 

Lang Apache Commons Lang 3.4 A language-support enhanced library for Java 

JodaTime Joda-Time 2.8.2 An enhanced library for Java time and date 

Math Apache Commons Math 3.5 A math and algorithm library for Java 

†For this project, the source code is not provided with a specific version. Hence, we extract the master branch (on January 31th, 2016) in the version control system  
for experiments.

Table 2 Tests and requirements of ten large-scale real projects. 

# Satisfied requirements per test

Project # Tests # Requirements Min Median Max Average Stdev.

Camel 908 21551 1 257 7494 1656.9 2206.2

AssertJ 1219 3632 1 66 722 82.1 66.0

Configuration 1333 9062 2 237 2073 341.7 310.3

JGit 1448 13678 1 85 4203 158.8 342.2

Closure 1626 14936 1 1529 2586 1316.6 738.8

Collections 4882 12512 1 69 591 92.9 87.3

JFreeChart 2247 29846 1 108 3945 293.6 557.6

Lang 2767 11857 1 19 377 42.1 56.0

JodaTime 4118 10567 1 150 1845 209.7 179.9

Math 6196 44947 1 139 1714 236.3 248.7
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Camel. Among ten projects, ILP can obtain six optimal solu-
tions while the other four projects are not solved until the 
timeout of 7,200 seconds. MultiWalk can also obtain the opti-
mal solutions in five out of six projects that ILP solves. RAPS 
can obtain the best-known solutions on seven out of ten proj-
ects, but may lead to more running time than MultiWalk, e.g., 
on the project, Configuration.

MultiWalk spends less time cost than ILP. In the five proj-
ects where both MultiWalk and ILP find optima, the average 
run times of MultiWalk and ILP are 18.2 and 1353.4 seconds, 
respectively. That is, MultiWalk is more efficient in the running 
time than ILP. Note that although our algorithm MultiWalk 
obtains the optimal solution on these five projects, there is no 
guarantee that MultiWalk can find the optimal ones (as shown 
on the project Camel).

Comparing MultiWalk with five heuris-
tics, GRE, HGS, RAPS, RWLS, and GA, 
MultiWalk is more effective than the other 
heuristics. Comparing MultiWalk with Walk-
Test, MultiWalk can find better solutions 
with less running time. This shows that the 
multi-level strategy in MultiWalk can save 
the time of searching potential solutions.

B. Empirical Analysis of MultiWalk
We further analyze three factors of MultiWalk to investigate its 
ability of test suite reduction, i.e., the similarity between local 
optima and global optima, the change of backbone scales with 
the number of local optima, and the ability of reducing prob-
lem scales with levels.

Similarity between local and global optima. Multi-
Walk leverages the backbone, i.e., the intersection of local 
optima, to lock a subset of tests and then downgrades the 
problem scale. The backbone is expected to be similar to the 
optimal solution to find better solutions. Fig. 3 shows the box 
plots of the similarity between solutions by WalkTest (i.e., local 
optima) and optima by ILP on six projects (as shown in 
Table 3). Each box plot is based on 100 solutions by WalkTest. 

Table 3 Comparison between MultiWalk and six algorithms on ten large projects by measuring both the test suite size  
after reduction and the running time of algorithms (in seconds).

Original 
test size

Algorithms in comparison

Project Metric ILP GRE HGS RAPS RWLS GA WalkTest MultiWalk

Camel Size 908 433.0 434.4 433.0 433.0 433.0 435.0 434.0 433.3

Time 907.0 8.1 4.3 456.4 170.2 182.1 447.7 51.8 

AssertJ Size 1219 466.0 471.5 467.6 466.0 479.3 472.3 467.6 466.0

Time 1219.0 0.2 0.2 3.2 117.9 8.0 36.1 5.1 

Configuration Size 1333 365.0 367.0 367.6 365.0 384.6 373.0 368.7 365.0

Time 1333.0 1.1 1.0 14.3 233.3 21.7 110.9 12.7 

JGit Size 1448 472.0 477.6 474.0 472.0 485.2 478.5 474.0 472.0

Time 1448.0 0.5 1.3 9.5 38.9 20.3 90.4 10.1 

Closure Size 1626 491.0 501.0 495.7 491.0 495.0 503.7 495.3 491.0

Time 1626.0 14.1 4.6 289.7 250.4 175.0 508.2 56.7 

Collections Size 4882 – 949.0 931.6 918.9 923.3 954.5 932.3 917.6 

Time timeout 3.5 2.9 10.8 25.7 29.4 125.0 23.3 

JFreeChart Size 2247 – 1011.8 997.4 995.0 1022.2 1001.3 999.3 995.0 

Time timeout 3.7 7.3 39.2 313.7 110.9 322.5 37.9 

Lang Size 2767 1343.0 1351.0 1349.5 1343.0 1365.3 1351.0 1346.0 1343.0 

Time 2767.0 0.4 1.4 5.6 22.7 14.9 50.3 6.4 

JodaTime Size 4118 – 660.6 641.3 638.2 673.5 681.5 657.6 630.8 

Time timeout 5.4 4.0 25.1 29.3 49.4 133.7 28.5 

Math Size 6196 – 2171.2 2138.8 2128.9 2135.1 2162.7 2143.6 2125.2 

Time timeout 12.6 91.0 155.7 170.5 252.9 629.3 72.8 

The similarity between local and global optima is 
essential to conduct the instance reduction. An ideal 
backbone is expected to be one part of the global 
optimum but is hard to be found in practice. 
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Consider a solution S  and an optimum O  of the original 
test suite (T S T3  and ),O T3  the similarity is defined 
as similarity ( , ) | |/| |.S O S O O+=  As shown in Fig. 3, the 
median of similarity in five projects is between 0.80 and 0.95. 
This result indicates that solutions by WalkTest partially con-
tain tests in the optima, which are obtained by ILP. Our pro-
posed algorithm, MultiWalk, benefits from such similarity to 
conduct final solutions.

Backbone scales with the number of local optima. In 
MultiWalk, the backbone is extracted based on the intersection 
of local optima. Fig. 4 shows the change of backbone scales via 
increasing the number of local optima. For instance, the top 
curve shows that in the project Lang, the scale of the backbone 
decreases from 49% to 42% when the number of local optima 
increases from 1 to 15. In each of these ten projects, when the 
number of local optima increases from 1 to 3, the scale of 
backbones decreases fast. When the number of local optima is 
over 7, the curves tend to be stable; when the number of local 
optima is from 11 to 15, the change of curves is unnoticeable. 
Hence, as mentioned before, in MultiWalk, we set the number 
b  of local optima to 10.

Ability of problem scale downgrading in levels. The 
downgrading of problem scales benefits from locking back-
bones and discarding shielded tests. In each level of MultiWalk, 
two opportunities lead to small problem instances. Fig. 5 illus-
trates the changes of problem scales based on levels. In this 
illustration, we use four projects that ILP cannot find optimal 
solutions. As shown in Fig. 5, in the first five levels, all the 
problem scales decrease fast. From Levels 5 to 15, the problem 
scale continuously decreases. In each level, locking the back-
bone results in discarding a number of shielded tests. In the 
project JFreeChart, locking the first backbone leads to the 
shielding of 70% tests. In all the four projects under consider-
ation, both the backbones and shielded tests contribute to the 
scale reduction. In two projects, Collections and Math, 18 levels 
in Fig. 5 cannot reduce the problem scales to less than 0.1%. 
For any problem instance after given levels, the local search in 

MultiWalk will directly run to find a sub-optimal solution. To 
sum up, the design of the backbone and shielded tests makes 
MultiWalk find solutions that are similar to or even the same as 
the optimal solutions.
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Figure 3 Similarity between 100 solutions by WalkTest and optima 
by ILP on six projects.
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VI. Discussions
We discuss the potential extension of our method, MultiWalk 
and the threats to the validity in this section.

A. Potential Extension
Extension of the general model of test suite reduction. 
As mentioned in Section II, the addressed model of test suite 
reduction can be extended due to refined application scenarios. 
For instance, the abilities of fault localization can be modeled 
and added as constraints of a test suite reduction instance [35], 
[36]; the cost of test execution can also be modeled as con-
straints [37]. Note that multi-objective test suite reduction (e.g., 
[38]) cannot be addressed by directly extending the model in 
this paper. Similar to other problems in multi-objective optimi-
zation, multi-objective test suite reduction investigates the 
diversification of solutions, which is not always focused in single-
objective ones.

Extension for the non-optima in instances with small 
scales. Our proposed algorithm MultiWalk can find the best 
solutions among seven algorithms on nine out of ten projects 
of test suite reduction. However, MultiWalk fails in finding the 
best solution on one instance with the small scale. This moti-
vates us to explore the drawback of the design in MultiWalk. A 
potential solution of solving this problem is to identify the 
hardness of instances and then employs different algorithms 
according to instances.

B. Threats to Validity
Construct validity. Our work as well as many existing works 
measures the size of a reduced test suite to evaluate the algo-
rithm effectiveness. Such evaluation is based on a hypothesis 
that the executing time of each test is the same. However, this 
hypothesis does not always hold in practice due to the diversity 
of tests. In this paper, we consider the code coverage as the 
major objective; to involve the execution time, a multi-objec-
tive method could be designed [38].

Internal validity. To measure the similarity between solutions, 
we use the global optima by ILP for calculation. However, there is 
a threat that more than one optimum exists in one instance. The 
calculation should be based on a set of optima, rather than only 
one optimum. Due to the complexity of exhausting potential 
optima, our calculation can be viewed as a trade-off between the 
accurate similarity and the running time. The technique of fitness 
landscape analysis may contribute to reduce the risk of similarity 
calculation with multiple optima [39].

External validity. In our work, tests and requirements are 
extracted to serve as the datasets for the evaluation. All 

real-world projects in the experimental 
setup are Java programs. We have never eval-
uated our work on projects in other lan-
guages. There exists a threat to the generality 
of the effectiveness. A large amount of 
experiments on projects in different lan-
guages could help to reduce the threat.

VII. Related Work
The general model of test suite reduction reduces the cost of 
test execution and keeps test requirements satisfied. As men-
tioned in Section II, existing methods such as HGS, GRE and 
RAPS, have been empirically evaluated and these methods are 
effective to reduce the scale of test suites. These methods can be 
viewed as a method family of search based test suite reduction, 
which leverages optimization algorithms to find near-optimal 
and small test suites by reducing test cases.

Search based test suite reduction. Besides the algorithms 
in the experiment, there exist several works in search based test 
suite reduction. Zhong et al. [31] have shown that the Genetic 
Algorithm (GA) can work on the test suite reduction, but is not 
as effective as HGS. Tallam and Gupta [40] have proposed a 
concept analysis based on the greedy algorithm. Hao et al. [10] 
propose an on-demand approach to test suite reduction to bal-
ance the global and local greedy reduction methods. Different 
from direct solving test suite reduction in the above works, 
MultiWalk leverages the common selected tests and shielded 
tests to guide the optimization. The original problem is itera-
tively converted into a small one via analyzing current tests.

Domain knowledge in test suite reduction. Domain 
knowledge of software testing is involved to extend the above 
model of test suite reduction. Bengolea et al. [41] propose 
reduction techniques for bounded exhaustive testing. Shi et al. 
[42] combine the test suite reduction and test case selection to 
reduce the test cost. Several existing works have modeled test 
suite reduction via fault detection [11], [35], [37]. Multi-objec-
tive test suite reduction [7], [38] aims to find the trade-off of 
more than one objective, such as the scale, the execution cost, 
and the requested resources of test suites. Qian et al. [43] 
recently prove that Pareto optimization is more efficient than 
the penalty function method for obtaining the optimal and 
approximate solutions in the minimum cost coverage problem.

Multi-level search. Multi-level search is a strategy for 
reducing the search space via transforming the original prob-
lem instance. Walshaw [16] has designed multi-level search for 
the traveling salesman problem. Xuan et al. [44] propose a 
multi-level method to boost the search process of the next 
release problem. Jiang et al. [45] develop a new paradigm of 
search space transformation to reduce and smooth the poten-
tial space of high-quality solutions. Mahdavi et al. [46] propose 
a multiple hill climbing search via identifying building blocks 
for the software module clustering problem. In MultiWalk, we 
share the same algorithm framework, multi-level search [16], 
[44]. In contrast to existing works, the solution in each level is 
based on backbones and shielded tests, which are obtained via 

The scale of the problem instance can be reduced in each 
level. The largest project under evaluation is reduced to 
0.6% of its original scale within 18 levels. 
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random walk search; backbones and shielded tests could 
reduce the distance between local optima and global optima.

VIII. Conclusions and Future Work
In this paper, we address the problem of software test suite reduc-
tion to support continuous development and testing. We propose 
MultiWalk, a multi-level random walk algorithm to solve test 
suite reduction. MultiWalk reduces the scales of problem instances 
by locking the backbone and discarding shielded tests. Experi-
mental results show that MultiWalk is more effective than state-
of-the-art heuristics of test suite reduction. Moreover, MultiWalk 
can efficiently find optima on five out of six projects, which ILP 
solves; for large projects that ILP fails to solve, MultiWalk provides 
the best solutions among algorithms in comparison.

In future work, we aim to improve MultiWalk to handle both 
large-scale and small-scale instances. Another future work is to 
further dig the hidden factors that MultiWalk can find optimal 
solutions in test suite reduction. We also plan to explore the 
usage of MultiWalk in other types of hard-to-solve problems.
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