
24 IEEE ComputatIonal IntEllIgEnCE magazInE | may 2017 1556-603x/17©2017IEEE

Abstract—Which test cases should be selected to save the time
of software testing? Due to the large time cost of running all test
cases, it is necessary to run representative test cases to shorten the
software development cycle. Test suite reduction, an NP-hard
problem in software engineering, aims to select a subset of test
cases to reduce the time cost of test execution in satisfying test
requirements. Recently, search based software engineering
provides a new direction to test suite reduction by connecting
software engineering problems with computational intelligence
methods. In this paper, we propose a multi-level optimization
algorithm to simplify the original problem instance of test suite
reduction. In each level, we search for local optimal solutions
with random walk in potential subsets of the test suite. The
problem scale is reduced by locking the intersection of local
optima and by discarding shielded test cases with no con -
tribution to test requirements. We compare our algorithm with
state-of-the-art methods on test suites of ten large-scale open
source projects. Experiments show that our algorithm can more
efficiently find optima on five out of six projects, in which
Integer Linear Programming (ILP) can find optima; for the
other four projects that ILP fails to solve, our algorithm provides
the best solutions among heuristics in comparison.

I. Introduction

Software testing is important and time-consuming. A test
suite, i.e., a set of test cases, plays a key role in validating
the expected program behavior. In modern test-driven
development, a test suite pushes the development prog-

ress. Software evolves over time; its test suite is executed to
detect whether a new code change adds bugs to the existing
code. Executing all test cases after each code change is unnec-
essary and may be impossible due to the limited development
cycle. On the one hand, multiple test cases may focus on an
identical piece of code; then several test cases cannot detect
extra bugs. On the other hand, even executing a test suite
once in a large project takes around one hour [1]; frequent
code changes require much time for conducting testing. For
instance, in Hadoop, a framework of distributed computing,
2,847 version commits are accepted within one year from
September 2014 with a peak of 135 commits in one week [2].

Which test cases should be selected to save the testing time?
Test suite reduction aims to minimize the number of executed
test cases to cover all test requirements. Test requirements are prac-
tically viewed as code coverage. For instance, statement coverage,
i.e., the ratio of covered statements during test execution, is the
most common test requirements in real-world development [3].

Digital Object Identifier 10.1109/MCI.2017.2670460
Date of publication: 10 April 2017 Corresponding Author: Jifeng Xuan (jxuan@whu.edu.cn).

Multi-Level Random Walk
for Software Test Suite

Reduction

may 2017 | IEEE ComputatIonal IntEllIgEnCE magazInE 25

Test suite reduction, also called test suite minimization in
some literature [3], is one of the typical fields in search based
software engineering [4]. The development of search based
software engineering bridges the gap between software engi-
neering problems and computational intelligence methods.
Well-designed heuristics in computational intelligence can be
employed or transformed to address optimization problems in
software engineering. This expands the application of the
research in computational intelligence.

Application scenario of test suite reduction. Test suite
reduction is inevitable for continuous development and testing.
Test suite reduction provides a subset of test suite without los-
ing pre-defined test requirements. After each code change, the
reduced test suite is executed to detect potential bugs, i.e.,
ensuring that no bug is newly involved during continuous
code changes.

The test suite reduction problem is formulated as the unic-
ost set covering problem (the “unicost” is omitted for short) [5],
which is one of the Karp’s 21 NP-complete problems [6]. To
find a minimized test suite, many algorithms are designed,
including heuristics [7] and exact algorithms like Integer Linear
Programming (ILP) [8], [9]. As an exact method for the set
covering problem, ILP can find global optima for test suite
reduction, but may be expensive in time cost and computing
resources. Heuristics can find a near-optimal solution, but there
is large room to improve the solution.

In this paper, we propose MultiWalk, a Multi-level ran-
dom Walk algorithm for software test suite reduction. Multi-
Walk leverages the common part of local optima by random
walk search to simplify the original problem instance, where
the common part (i.e., the intersection) of local optima is
referred to as the “backbone”. In each level of MultiWalk, we
search for local optimal solutions with random walk in poten-
tial subsets of the test suite. The problem scale is iteratively
reduced by locking the backbone and by discarding shielded
test cases, which contribute to no test requirements in the test
suite. MultiWalk repeats extracting the backbone and reducing
the scale for multiple times until a small problem is achieved.
A solution to this small problem is combined with the back-
bones to refine the final solution to the original problem.
Hence, in MultiWalk, the process of finding a minimized test
suite is converted into finding backbones and refining the
final solution.

Experiments are conducted on ten widely-used and large-
scale open source projects in Java. Each project is instrumented
to collect runtime traces and to record the statement coverage.
We compare MultiWalk with five state-of-the-art heuristics,
the exact method ILP, and random walk without the multi-
level strategy. Experimental results show that MultiWalk can
find optima within less time for five out of six projects that ILP
can solve; meanwhile, MultiWalk can obtain better solutions
than the state-of-the-art heuristics for projects that ILP fails to
solve before timeout. To further understand MultiWalk, we
investigate its ability of test suite reduction in three directions,
i.e., the similarity between local and global optima, the change
of backbone scales with the number of local optima, and the
ability of problem scale downgrading with levels.

II. Software Test Suite Reduction Problem
Given a test suite ,T T n=^ h i.e., a set of test cases, and a set
R of test requirements | | ,R m=^ h let A be the runtime coverage

Zongzheng Chi
School of Software, Dalian University of Technology,
CHINA

Jifeng Xuan
State Key Lab of Software Engineering, Wuhan University,
CHINA

Zhilei Ren
School of Software, Dalian University of Technology,
CHINA

Xiaoyuan Xie
State Key Lab of Software Engineering, Wuhan University,
CHINA

He Guo
School of Software, Dalian University of Technology,
CHINA

Im
a

g
e

 l
Ic

e
n

s
e

d
 b

y
 In

g
r

a
m

 P
u

b
lI

s
h

In
g

26 IEEE ComputatIonal IntEllIgEnCE magazInE | may 2017

between test cases in T and requirements in .R That is
: { , | , , } .r t T r RA T R t r t satisfies where# ! !G H= A test

case is called a test for short. For each r Ri ! and each ,t Tj !
a 1ij = indicates that ri is satisfied by ;t j a 0ij = indicates not. A
general form of the problem of software test suite reduction is
defined as follows,

, { , }

, { , }

x x

a x a

0 1

1 0 1

Objective: minimize

Constraint:

j
j

n

j

ij
j

n

j ij
i

m

1

11

!

$!

=

==

e o)

/

/

where x j indicates whether a test t Tj ! is selected in the
reduced test suite. This problem has the same model as the set
covering problem, which is already proved as NP-complete [6].
The above model of test suite reduction can be specialized via
abstracting domain knowledge, such as on-demand requests [10]
and abilities of fault localization [11]. In this paper, we address
the general model above, whose extension will be discussed in

Section VI. For test suite reduction, ILP can
exactly solve small-scale instances, while deal-
ing with large-scale instances with ILP may
be practically impossible [12].

In practice, test requirements in R are a
type of test criterion that indicates software
quality. Code coverage, measuring how much
code is executed by the reduced test suite, is

the most common criterion of test requirements. Informally, the
test suite reduction problem is to select a minimized subset of
test cases, which cannot lose the statement coverage, comparing
with the original test suite. Note that besides statement coverage,
fault detection capability and program mutation scores can also
serve as test requirements [13]. However, collecting these
requirements for large projects is complex and time-consuming.
In this paper, we evaluate test suite reduction via statement cov-
erage (i.e., how many statements are executed by test cases),
which is widely-used in most of related work of test suite
reduction [7], [8].

Ideally, ILP can find optimal solutions to test suite reduction
if the computing resource is unlimited. However, for large soft-
ware projects, only focusing on the optimal solutions with ILP
may be infeasible. Hence, many heuristics are developed to effi-
ciently finding sub-optimal solutions. For instance, a pioneering
heuristic, GRE by Chen and Lau [14] extends the greedy algo-
rithm by removing redundancy between two unselected test
cases; a state-of-the-art meta-heuristic, RAPS by Lan et al. [15]
finds solutions via the technique of meta-heuristics for ran-
domized priority search.

Motivated by the trade-off between ILP and heuristics, we
design a new algorithm to downgrade the problem scale and to
find solutions for small ones. Our algorithm leverages random
walk on the selection of test cases; then the common part of
solutions by random walk is locked to further reduce the prob-
lem scale.

III. Multi-Level Random Walk
To reduce the problem scale of test suite reduction for large
projects, we design MultiWalk, a Multi-level random Walk
algorithm. The reduction of problem scales is based on locking
the intersection of local optima by random walk search. For the
sake of simplification, a solution S of test suite reduction is
viewed as a subset of the original test suite, i.e., .S T3

A. Multi-Level Strategy
Since it is hard to directly solve an original problem of test
suite reduction, we intend to solve small sub-problems instead.
Our idea, motivated by Walshaw [16], is to conduct multiple
levels of sub-problems by locking several tests. The multi-level
strategy consists of two major stages, the reduction stage that
reduces the problem scales and the refinement stage that com-
bines solutions in multiple levels.

To obtain a solution similar to (or even the same as) an
optimal solution, an ideal way is to lock tests that belong to
the optimal solution. We leverage the concept of “backbone”

Algorithm 1 MultiWalk, a multi-level random walk algorithm

for test suite reduction.

 Input:
 , ,T R1 1G H an original problem instance with a test suite T1

and a requirement set ;R1

 ,s a local search operator;
 ,a the maximum number of levels;
 ,b the number of local optima in each level.
 Output:
 ,S1 a solution to the original instance , .T R1 1G H
 1 for Level , ,k 1 f a= do
 2 find a set ofkT b local optima to the instance ,T Rk kG H

by the local search operator ;s
 3 collect a backbone ;k k+d D=

 4 collect requirements covered by ,kd ()Coverk kx d= ;
 5 reduce the instance, ,\T Tk k k1

0 d=+ ;\R Rk k k1 x=+

 6 collect a shielded test set (,);T RShieldk k k1
0

1{ = + +

 7 discard tests in , \T Tk k k k1 1
0{ {=+ + ;

 8 end
 9 count the actual number c of levels ;#c a^ h

10 find selected tests S 1c+ for the smallest instance
,T R1 1G Hc c+ + by ;s

11 for Level , ,k 1fc= do
12 refine selected tests, ;S Sk k k1 , d= +

13 end

A test suite is iteratively developed together with the
source code to find software bugs in the early stage.
This follows a modern development process, called
test-driven development.

may 2017 | IEEE ComputatIonal IntEllIgEnCE magazInE 27

[17], [18] that is defined as the common part of optimal solu-
tions. In the context of test suite reduction, a backbone is a
subset of the whole test suite. Since it is hard to find optimal
solutions of an NP-hard problem, the backbone is practically
replaced by the approximate backbone, which is the inter-
section of local optimal solutions [19], [20]. We use the term
“backbone” to denote “approximate backbone” for short. In
this paper, random walk search is employed to find local opti-
ma of test suite reduction and then collect the backbone based
on these local optima.

Algorithm 1 presents the overview of MultiWalk. At Lines 1
to 8, MultiWalk reduces a problem instance for multiple times by
locking the backbone based on local search; at Line 9, the actual
number of levels is counted; then at Line 10, a solution to the
reduced instance is obtained; at Lines 11 to 13, the solution to the
small instance and the backbones are combined to form the final
solution to the original problem instance.

In each level of instance reduction,
tests in the backbone (Line 5) are select-
ed as a part of the final solution while
tests that are shielded by other tests
(Line 7) are discarded from the final
solution. A shielded test case denotes a
non-selected test case, whose covered
statements are covered by another test
case. We discard shielded test cases since
it cannot benefit the statement coverage
but adds the size of executed tests.

B. Backbone and Shielded Tests
A backbone in test suite reduction is a
potential test component, which is possi-
ble to be abstracted to improve the
design of the test suite [21]. The size of a
backbone depends on the number of
local optima as well as the ability of the
local search operator [22], [23]. In gen-
eral, any local search technique can be
embedded in the multi-level algorithm.
An experiment in Section V-B will
later show that local optima by WalkTest
are similar to the global optimal solution.

In contrast to the backbone that is
locked to conduct the final solution,
shielded test cases are discarded to avoid
the redundancy in solutions. Once a test
case is shielded by others, it cannot con-
tribute to adding statement coverage.
Since our multi-level strategy reduces
the problem instances for several times,
shielded test cases can be removed after
obtaining the backbone in each level.
An experiment in Section V-B will
illustrate that discarding shielded test
cases will effectively reduce the problem

scale. Note that in one level of MultiWalk, an empty backbone
or no shielded test does not break the algorithm. MultiWalk
can skip this level and directly go to the next level since Multi-
Walk is an iterative procedure.

Fig. 1 illustrates the roles of backbones and shielded test cases
with an example of two-level reduction and refinement in Mul-
tiWalk. The original problem instance with seven tests is reduced
to two smaller instances; a solution to the reduced instance is
combined together with two backbones as the final solution.

C. Random Walk Search, WalkTest
Many local search operators can be embedded into MultiWalk.
In this section, we design a new local search based on random
walk, which is motivated by the success of random walk
 techniques in the SAT problem, i.e., WalkSat [24]–[26].
The random walk in WalkTest provides the diversification of

r1

t1
t2
t3
t4
t5
t6
t7

t1
t2
t3
t4
t5
t6
t7

r2 r3 r4 r5 r6 r7 r1 r2 r3 r4 r5 r6 r7

backbone1 = {t1, t6} shielded_test_set1 = {t5}

final_solution = {t1, t3, t4, t6, t7}

...

...

...

...

r1

t1
t2
t3
t4
t5
t6
t7

t1
t2
t3
t4
t5
t6
t7

r2 r3 r4 r5 r6 r7 r1 r2 r3 r4 r5 r6 r7

backbone2 = {t3} shielded_test_set2 = {t2}

...

...

r1

t1
t2
t3
t4
t5
t6
t7

r2 r3 r4 r5 r6 r7

local_optimum = {t4, t7}

backbone1 = {t1, t6}

backbone2 = {t3}

local_optimum = {t4, t7}...

...

...

...

(a)

(b)

(c)

FIguRe 1 Illustration of test suite reduction on seven test cases and over seven requirements
(only seven requirements are shown). Two-level reduction and refinement is conducted before
finding the final solution. (a) The first level reduction. A backbone of tests t1 and t6 is selected;
requirements r2 and r7 are satisfied. Then in the reduced instance, a test t5 is shielded by t2 or t3.
(b) The second level reduction. In the reduced instance after the first level, a backbone of a test t3
is selected; requirements r3 and r5 are satisfied. Then in the reduced instance, a test t2 is shielded
by t7. (c) Solving the small instance after the second level and conducting two-level refinement.

28 IEEE ComputatIonal IntEllIgEnCE magazInE | may 2017

solutions; in this case, greedy algorithms are not suitable for
collecting backbones.

Fig. 2 illustrates the major steps of our random walk opera-
tor, called WalkTest. The nature of random walk is to randomly
traverse the search space of an instance; a random walk operator
guides such traversal by designing the moves, which are led by a
pre-defined probability .p In our case, WalkTest makes greedy
moves with p and random moves with ;p1- the iterative pro-
cess in WalkTest is expected to fit the noisy search space [27].

WalkTest starts with randomly generating a solution to test
suite reduction. Then a number of tries are conducted to find a
local optimum. In each try, WalkTest first collects zero-hurt
tests. A zero-hurt test is a selected test, which could be removed
without losing statement coverage. That is, this test case is
redundant to the reduced test suite. If zero-hurt test exists, one
of such tests is removed from the solution; if not, WalkTest pro-
ceeds according to a given probability .p With a probability ,p
a non-selected test that can add the most covered statements
will be selected in the solution; with ,p1- one of non-select-
ed tests is randomly added to the solution. WalkTest continu-
ously manipulates the solution until the maximum number of
tries reaches.

We choose WalkTest to find the local optima since it is
simple in design. WalkTest shares the similar strategy with
many existing heuristics. For instance, the design of random
walk in WalkTest relates to simulated annealing algorithms
[28]. We list major differences between WalkTest and simulated
annealing in three categories. First, simulated annealing
accepts the best solution during its iteration while WalkTest
randomly accepts one of improved solutions. Second, simulat-
ed annealing chooses a worse solution based on an acceptance
probability while WalkTest updates a worse solution based an
acceptance probability. Third, the acceptance probability in

simulated annealing decreases during the iteration while the
one in WalkTest is constant.

IV. Experimental Setup
We describe the dataset of test suite reduction in our experi-
ments and algorithms in comparison.

Online Resource for MultiWalk Experiments:
http://cstar.whu.edu.cn/p/multi-walk/
 Supplementary materials of experiments and the dataset
are publicly available.

A. Data Preparation
Table 1 lists ten large Java open source projects in our study. All
these projects are widely-used and original test suites are provid-
ed together with the source code. In each project, the test suite
is organized with the Java test framework, JUnit, which helps to
automate the data collection below. Table 2 shows the number
of tests and requirements of these ten projects. The size of test
cases in each project ranges from 908 to 6,196 while the median
of satisfied requirements per test ranges from 19 to 1,529.

To collect the runtime statement coverage between each
test case and each statement, we configure and execute all proj-
ects as following steps. First, for each project, we manually con-
figure the project according to its document. Source code and
test code are locally compiled and executed to confirm that
the whole test suite can pass the execution. Second, we instru-
ment the source code to record whether each statement is
executed, i.e., the aij value for a requirement ri and a test ;t j
meanwhile, we instrument the test code to identify which test
case is executed during runtime. Third, based on the instru-
mentation, we run the project to record the satisfaction between
tests and requirements. Before experiments, the above runtime

collection is conducted for all projects
and the resulted dataset is employed as
the input of algorithms in comparison.

B. Algorithms in Comparison
We compare our proposed algorithm
MultiWalk with seven other algo-
rithms during experiments, ILP, GRE,
HGS, RAPS, RWLS, GA, and Walk-
Test. As mentioned in Section II, ILP
is an exact method, which may fail to
find a solution due to the limited time.
GRE [14] and HGS [29] are two ty -
pical heuristics for solving test suite
reduction. GRE is an extended version
of the greedy algorithm, which can fast
find a near-optimal solution; HGS is a
pioneering algorithm of test suite
reduction and is designed based on
manual analysis of test suites. RAPS
[15] and RWLS [30] are two state-of-
the-art heuristics for the set covering

Generate a Random Solution

Do
Zero-Hurt Tests Exist?

Collect Zero-Hurt Tests

Randomly
Remove a

Zero-Hurt Test Add a Test that
Newly Covers

the Largest Number
of Test Requirements

Flip a Coin
for the Probability p

Randomly Add a
Test that Was
Not Selected

Yes

No

p
1–p

Iteration

FIguRe 2 Flow diagram of main steps in WalkTest.

may 2017 | IEEE ComputatIonal IntEllIgEnCE magazInE 29

problem. RAPS is a meta-heuristic via randomized priority
search; RWLS is an efficient search algorithm via weighting
rows in the set covering model. GA [31] is a widely-used pop-
ulation-based algorithm in evolutionary computation. In addi-
tion, to show the effectiveness of the multi-level strategy in
MultiWalk, we also show the results by WalkTest with multi-
restart (WalkTest for short).

Experimental platform. All the experiments run on a
PC with Intel Core 3.6 GHz CPU, 4GB memory, and Ubuntu
12.04. The code instrumentation for the runtime coverage col-
lection [32] is implemented with a Java analysis framework,
Spoon 4.0 [33]. Among the algorithms under evaluation, we
call ILP with an off-the-shelf linear programming tool, lp_
solve 5.5 [34]. We implement all the other algorithms in Java
JDK 1.7.

V. Experimental Results
We evaluate our algorithm on ten large real-world Java open
source projects; meanwhile, an exact algorithm, ILP, and six
heuristics are employed in comparing the size of tests after test
suite reduction and the time cost.

A. Test Suite Reduction on Real-World Projects
Our proposed algorithm, MultiWalk, is compared with seven
algorithms in this section. We setup algorithms in use as fol-
lows. The timeout of each algorithm is set to two hours
(7,200 seconds). All the heuristics are executed for 30 times to
obtain the average values; the random seed is the timestamp
of the system clock. In WalkTest, the probability p is set to
0.5; 10000 tries are used to obtain local optima. In WalkTest
with multi-restart, WalkTest is restarted for 100 times to
achieve the best solution. In MultiWalk, WalkTest without
restart is used as the embedded local search operator ;s the
maximum number of levels is set to 20a = and the number
of local optima in each level is set to .10b = Further ex -
periments in Section V-B will show the sensitivity to a and
b in MultiWalk.

Table 3 shows both the test suite size after reduction and
the time cost of running algorithms. In these experimental
results, MultiWalk can obtain the best-known solutions on
nine out of ten projects. One exception is the project Camel,
which is the smallest project under consideration. ILP, as well as
HGS, RAPS, and RWLS, can obtain the optimal solution on

TAbLe 1 Description of ten large-scale real projects.

PROjecT FuLL nAMe WITh veRSIOn PROjecT deScRIPTIOn

CAmel ApAChe CAmel Core 2.15 A verSATIle FrAmeWork bASed on enTerprISe InTegrATIon pATTernS

ASSerTJ ASSerTJ Core † An ASSerTIon enhAnCed FrAmeWork For JAvA TeSTIng

ConFIgurATIon ApAChe CommonS ConFIgurATIon 1.10 A generIC ConFIgurATIon InTerFACe oF reAdIng ConFIgurATIon dATA

JgIT JgIT † A gIT InTerFACe From JAvA progrAmS

CloSure google CloSure CompIler † A FAST CompIler For JAvASCrIpT

ColleCTIonS ApAChe CommonS ColleCTIonS 4.0 An enhAnCed lIbrAry For JAvA ColleCTIonS

JFreeChArT JFreeChArT 1.0 A lIbrAry For proFeSSIonAl quAlITy ChArTS

lAng ApAChe CommonS lAng 3.4 A lAnguAge-SupporT enhAnCed lIbrAry For JAvA

JodATIme JodA-TIme 2.8.2 An enhAnCed lIbrAry For JAvA TIme And dATe

mATh ApAChe CommonS mATh 3.5 A mATh And AlgorIThm lIbrAry For JAvA

†For this project, the source code is not provided with a specific version. hence, we extract the master branch (on January 31th, 2016) in the version control system
for experiments.

TAbLe 2 Tests and requirements of ten large-scale real projects.

SATISFIed RequIReMenTS PeR TeST

PROjecT # TeSTS # RequIReMenTS MIn MedIAn MAx AveRAge STdev.

CAmel 908 21551 1 257 7494 1656.9 2206.2

ASSerTJ 1219 3632 1 66 722 82.1 66.0

ConFIgurATIon 1333 9062 2 237 2073 341.7 310.3

JgIT 1448 13678 1 85 4203 158.8 342.2

CloSure 1626 14936 1 1529 2586 1316.6 738.8

ColleCTIonS 4882 12512 1 69 591 92.9 87.3

JFreeChArT 2247 29846 1 108 3945 293.6 557.6

lAng 2767 11857 1 19 377 42.1 56.0

JodATIme 4118 10567 1 150 1845 209.7 179.9

mATh 6196 44947 1 139 1714 236.3 248.7

30 IEEE ComputatIonal IntEllIgEnCE magazInE | may 2017

Camel. Among ten projects, ILP can obtain six optimal solu-
tions while the other four projects are not solved until the
timeout of 7,200 seconds. MultiWalk can also obtain the opti-
mal solutions in five out of six projects that ILP solves. RAPS
can obtain the best-known solutions on seven out of ten proj-
ects, but may lead to more running time than MultiWalk, e.g.,
on the project, Configuration.

MultiWalk spends less time cost than ILP. In the five proj-
ects where both MultiWalk and ILP find optima, the average
run times of MultiWalk and ILP are 18.2 and 1353.4 seconds,
respectively. That is, MultiWalk is more efficient in the running
time than ILP. Note that although our algorithm MultiWalk
obtains the optimal solution on these five projects, there is no
guarantee that MultiWalk can find the optimal ones (as shown
on the project Camel).

Comparing MultiWalk with five heuris-
tics, GRE, HGS, RAPS, RWLS, and GA,
MultiWalk is more effective than the other
heuristics. Comparing MultiWalk with Walk-
Test, MultiWalk can find better solutions
with less running time. This shows that the
multi-level strategy in MultiWalk can save
the time of searching potential solutions.

B. Empirical Analysis of MultiWalk
We further analyze three factors of MultiWalk to investigate its
ability of test suite reduction, i.e., the similarity between local
optima and global optima, the change of backbone scales with
the number of local optima, and the ability of reducing prob-
lem scales with levels.

Similarity between local and global optima. Multi-
Walk leverages the backbone, i.e., the intersection of local
optima, to lock a subset of tests and then downgrades the
problem scale. The backbone is expected to be similar to the
optimal solution to find better solutions. Fig. 3 shows the box
plots of the similarity between solutions by WalkTest (i.e., local
optima) and optima by ILP on six projects (as shown in
Table 3). Each box plot is based on 100 solutions by WalkTest.

TAbLe 3 Comparison between MultiWalk and six algorithms on ten large projects by measuring both the test suite size
after reduction and the running time of algorithms (in seconds).

ORIgInAL
TeST SIze

ALgORIThMS In cOMPARISOn

PROjecT MeTRIc ILP gRe hgS RAPS RWLS gA WALkTeST MuLTIWALk

CAmel SIze 908 433.0 434.4 433.0 433.0 433.0 435.0 434.0 433.3

TIme 907.0 8.1 4.3 456.4 170.2 182.1 447.7 51.8

ASSerTJ SIze 1219 466.0 471.5 467.6 466.0 479.3 472.3 467.6 466.0

TIme 1219.0 0.2 0.2 3.2 117.9 8.0 36.1 5.1

ConFIgurATIon SIze 1333 365.0 367.0 367.6 365.0 384.6 373.0 368.7 365.0

TIme 1333.0 1.1 1.0 14.3 233.3 21.7 110.9 12.7

JgIT SIze 1448 472.0 477.6 474.0 472.0 485.2 478.5 474.0 472.0

TIme 1448.0 0.5 1.3 9.5 38.9 20.3 90.4 10.1

CloSure SIze 1626 491.0 501.0 495.7 491.0 495.0 503.7 495.3 491.0

TIme 1626.0 14.1 4.6 289.7 250.4 175.0 508.2 56.7

ColleCTIonS SIze 4882 – 949.0 931.6 918.9 923.3 954.5 932.3 917.6

TIme TImeouT 3.5 2.9 10.8 25.7 29.4 125.0 23.3

JFreeChArT SIze 2247 – 1011.8 997.4 995.0 1022.2 1001.3 999.3 995.0

TIme TImeouT 3.7 7.3 39.2 313.7 110.9 322.5 37.9

lAng SIze 2767 1343.0 1351.0 1349.5 1343.0 1365.3 1351.0 1346.0 1343.0

TIme 2767.0 0.4 1.4 5.6 22.7 14.9 50.3 6.4

JodATIme SIze 4118 – 660.6 641.3 638.2 673.5 681.5 657.6 630.8

TIme TImeouT 5.4 4.0 25.1 29.3 49.4 133.7 28.5

mATh SIze 6196 – 2171.2 2138.8 2128.9 2135.1 2162.7 2143.6 2125.2

TIme TImeouT 12.6 91.0 155.7 170.5 252.9 629.3 72.8

The similarity between local and global optima is
essential to conduct the instance reduction. An ideal
backbone is expected to be one part of the global
optimum but is hard to be found in practice.

may 2017 | IEEE ComputatIonal IntEllIgEnCE magazInE 31

Consider a solution S and an optimum O of the original
test suite (T S T3 and),O T3 the similarity is defined
as similarity (,) | |/| |.S O S O O+= As shown in Fig. 3, the
median of similarity in five projects is between 0.80 and 0.95.
This result indicates that solutions by WalkTest partially con-
tain tests in the optima, which are obtained by ILP. Our pro-
posed algorithm, MultiWalk, benefits from such similarity to
conduct final solutions.

Backbone scales with the number of local optima. In
MultiWalk, the backbone is extracted based on the intersection
of local optima. Fig. 4 shows the change of backbone scales via
increasing the number of local optima. For instance, the top
curve shows that in the project Lang, the scale of the backbone
decreases from 49% to 42% when the number of local optima
increases from 1 to 15. In each of these ten projects, when the
number of local optima increases from 1 to 3, the scale of
backbones decreases fast. When the number of local optima is
over 7, the curves tend to be stable; when the number of local
optima is from 11 to 15, the change of curves is unnoticeable.
Hence, as mentioned before, in MultiWalk, we set the number
b of local optima to 10.

Ability of problem scale downgrading in levels. The
downgrading of problem scales benefits from locking back-
bones and discarding shielded tests. In each level of MultiWalk,
two opportunities lead to small problem instances. Fig. 5 illus-
trates the changes of problem scales based on levels. In this
illustration, we use four projects that ILP cannot find optimal
solutions. As shown in Fig. 5, in the first five levels, all the
problem scales decrease fast. From Levels 5 to 15, the problem
scale continuously decreases. In each level, locking the back-
bone results in discarding a number of shielded tests. In the
project JFreeChart, locking the first backbone leads to the
shielding of 70% tests. In all the four projects under consider-
ation, both the backbones and shielded tests contribute to the
scale reduction. In two projects, Collections and Math, 18 levels
in Fig. 5 cannot reduce the problem scales to less than 0.1%.
For any problem instance after given levels, the local search in

MultiWalk will directly run to find a sub-optimal solution. To
sum up, the design of the backbone and shielded tests makes
MultiWalk find solutions that are similar to or even the same as
the optimal solutions.

��

�

�

0.80

0.85

0.90

0.95

C
am

el

A
ss

er
tJ

C
on

fig
ur

at
io

n

JG
it

C
lo

su
re

La
ng

S
im

ila
rit

y

FIguRe 3 Similarity between 100 solutions by WalkTest and optima
by Ilp on six projects.

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15

S
ca

le
 o

f B
ac

kb
on

e
(%

)

Number of Local Optima

Lang
Camel
JFreeChart
AssertJ

JGit
Closure
Math
Configuration

Collections
JodaTime

FIguRe 4 Change of backbone scales with the number of local
 optima on ten projects.

0.1

1

10

100

S
ca

le
 o

f I
ns

ta
nc

es
 (

%
)

Level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Math Collections

JodaTime JFreeChart

Scale After Locking the Backbone

Scale After Discarding Shielded Tests

FIguRe 5 Scale of instances by locking backbones and discarding
shielded tests on four projects, which Ilp cannot solve. note that the
vertical axis is in the logarithmic scale.

32 IEEE ComputatIonal IntEllIgEnCE magazInE | may 2017

VI. Discussions
We discuss the potential extension of our method, MultiWalk
and the threats to the validity in this section.

A. Potential Extension
Extension of the general model of test suite reduction.
As mentioned in Section II, the addressed model of test suite
reduction can be extended due to refined application scenarios.
For instance, the abilities of fault localization can be modeled
and added as constraints of a test suite reduction instance [35],
[36]; the cost of test execution can also be modeled as con-
straints [37]. Note that multi-objective test suite reduction (e.g.,
[38]) cannot be addressed by directly extending the model in
this paper. Similar to other problems in multi-objective optimi-
zation, multi-objective test suite reduction investigates the
diversification of solutions, which is not always focused in single-
objective ones.

Extension for the non-optima in instances with small
scales. Our proposed algorithm MultiWalk can find the best
solutions among seven algorithms on nine out of ten projects
of test suite reduction. However, MultiWalk fails in finding the
best solution on one instance with the small scale. This moti-
vates us to explore the drawback of the design in MultiWalk. A
potential solution of solving this problem is to identify the
hardness of instances and then employs different algorithms
according to instances.

B. Threats to Validity
Construct validity. Our work as well as many existing works
measures the size of a reduced test suite to evaluate the algo-
rithm effectiveness. Such evaluation is based on a hypothesis
that the executing time of each test is the same. However, this
hypothesis does not always hold in practice due to the diversity
of tests. In this paper, we consider the code coverage as the
major objective; to involve the execution time, a multi-objec-
tive method could be designed [38].

Internal validity. To measure the similarity between solutions,
we use the global optima by ILP for calculation. However, there is
a threat that more than one optimum exists in one instance. The
calculation should be based on a set of optima, rather than only
one optimum. Due to the complexity of ex hausting potential
optima, our calculation can be viewed as a trade-off between the
accurate similarity and the running time. The technique of fitness
landscape analysis may contribute to reduce the risk of similarity
calculation with multiple optima [39].

External validity. In our work, tests and requirements are
extracted to serve as the datasets for the evaluation. All

real-world projects in the experimental
setup are Java programs. We have never eval-
uated our work on projects in other lan-
guages. There exists a threat to the generality
of the effectiveness. A large amount of
experiments on projects in different lan-
guages could help to reduce the threat.

VII. Related Work
The general model of test suite reduction reduces the cost of
test execution and keeps test requirements satisfied. As men-
tioned in Section II, existing methods such as HGS, GRE and
RAPS, have been empirically evaluated and these methods are
effective to reduce the scale of test suites. These methods can be
viewed as a method family of search based test suite reduction,
which leverages optimization algorithms to find near-optimal
and small test suites by reducing test cases.

Search based test suite reduction. Besides the algorithms
in the experiment, there exist several works in search based test
suite reduction. Zhong et al. [31] have shown that the Genetic
Algorithm (GA) can work on the test suite reduction, but is not
as effective as HGS. Tallam and Gupta [40] have proposed a
concept analysis based on the greedy algorithm. Hao et al. [10]
propose an on-demand approach to test suite reduction to bal-
ance the global and local greedy reduction methods. Different
from direct solving test suite reduction in the above works,
MultiWalk leverages the common selected tests and shielded
tests to guide the optimization. The original problem is itera-
tively converted into a small one via analyzing current tests.

Domain knowledge in test suite reduction. Domain
knowledge of software testing is involved to extend the above
model of test suite reduction. Bengolea et al. [41] propose
reduction techniques for bounded exhaustive testing. Shi et al.
[42] combine the test suite reduction and test case selection to
reduce the test cost. Several existing works have modeled test
suite reduction via fault detection [11], [35], [37]. Multi-objec-
tive test suite reduction [7], [38] aims to find the trade-off of
more than one objective, such as the scale, the execution cost,
and the requested resources of test suites. Qian et al. [43]
recently prove that Pareto optimization is more efficient than
the penalty function method for obtaining the optimal and
approximate solutions in the minimum cost coverage problem.

Multi-level search. Multi-level search is a strategy for
reducing the search space via transforming the original prob-
lem instance. Walshaw [16] has designed multi-level search for
the traveling salesman problem. Xuan et al. [44] propose a
multi-level method to boost the search process of the next
release problem. Jiang et al. [45] develop a new paradigm of
search space transformation to reduce and smooth the poten-
tial space of high-quality solutions. Mahdavi et al. [46] propose
a multiple hill climbing search via identifying building blocks
for the software module clustering problem. In MultiWalk, we
share the same algorithm framework, multi-level search [16],
[44]. In contrast to existing works, the solution in each level is
based on backbones and shielded tests, which are obtained via

The scale of the problem instance can be reduced in each
level. The largest project under evaluation is reduced to
0.6% of its original scale within 18 levels.

may 2017 | IEEE ComputatIonal IntEllIgEnCE magazInE 33

random walk search; backbones and shielded tests could
reduce the distance between local optima and global optima.

VIII. Conclusions and Future Work
In this paper, we address the problem of software test suite reduc-
tion to support continuous development and testing. We propose
MultiWalk, a multi-level random walk algorithm to solve test
suite reduction. MultiWalk reduces the scales of problem instances
by locking the backbone and discarding shielded tests. Experi-
mental results show that MultiWalk is more effective than state-
of-the-art heuristics of test suite reduction. Moreover, MultiWalk
can efficiently find optima on five out of six projects, which ILP
solves; for large projects that ILP fails to solve, MultiWalk provides
the best solutions among algorithms in comparison.

In future work, we aim to improve MultiWalk to handle both
large-scale and small-scale instances. Another future work is to
further dig the hidden factors that MultiWalk can find optimal
solutions in test suite reduction. We also plan to explore the
usage of MultiWalk in other types of hard-to-solve problems.

Acknowledgment
This work is partly supported by the National Natural Science
Foundation of China (under grants 61502345, 61572375, and
61403057).

References
[1] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test selection with
 dynamic f ile dependencies,” in Proc. Int. Symp. Software Testing and Analysis, Baltimore,
MD, July 12–17, 2015, pp. 211–222.
[2] Hadoop. (2015). Apache Hadoop [Online]. Available: http://github.com/apache/
hadoop/graphs/commit-activity.
[3] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritiza-
tion: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp. 67–120, Mar. 2012.
[4] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:
Trends, techniques and applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61,
Nov. 2012.
[5] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the set covering problem,” Ann.
Oper. Res., vol. 98, no. 1–4, pp. 353–371, Dec. 2000.
[6] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, The IBM Research Symposia Series, R. Miller, J. Thatcher, and J. Bohlinger,
Eds. New York: Springer-Verlag, 1972, pp. 85–103.
[7] H. Hsu and A. Orso, “MINTS: A general framework and tool for supporting test-
suite minimization,” in Proc. 31st Int. Conf. Software Engineering, Vancouver, Canada, May
16–24, 2009, pp. 419–429.
[8] J. Black, E. Melachrinoudis, and D. R. Kaeli, “Bi-criteria models for all-uses test suite
reduction,” in Proc. 26th Int. Conf. Software Engineering, Edinburgh, Scotland, May 23–28,
2004, pp. 106–115.
[9] A. Gotlieb and D. Marijan, “FLOWER: Optimal test suite reduction as a network
maximum f low,” in Proc. Int. Symp. Software Testing and Analysis, San Jose, CA, July
 21–26, 2014, pp. 171–180.
[10] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test suite reduc-
tion,” in Proc. 34th Int. Conf. Software Engineering, Zurich, Switzerland, June 2–9, 2012,
pp. 738–748.
[11] D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively re-
taining test cases during test suite reduction,” IEEE Trans. Softw. Eng., vol. 33, no. 2,
pp. 108–123, Feb. 2007.
[12] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study of junit test-
suite reduction,” in Proc. IEEE 22nd Int. Symp. Software Reliability Engineering, Hiroshima,
Japan, Nov. 29–Dec. 2, 2011, pp. 170–179.
[13] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Balancing trade-offs
in test-suite reduction,” in Proc. 22nd ACM SIGSOFT Int. Symp. Foundations of Software
Engineering, Hong Kong, China, Nov. 16–22, 2014, pp. 246–256.
[14] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,” Inform. Softw.
Technol., vol. 40, no. 5/6, pp. 347–354, July 1998.
[15] G. Lan, G. W. DePuy, and G. E. Whitehouse, “An effective and simple heuristic for
the set covering problem,” Eur. J. Oper. Res., vol. 176, no. 3, pp. 1387–1403, Feb. 2007.
[16] C. Walshaw, “A multilevel approach to the travelling salesman problem,” Oper. Res.,
vol. 50, no. 5, pp. 862–877, Sept./Oct. 2002.
[17] J. K. Slaney and T. Walsh, “Backbones in optimization and approximation,” in Proc.
17th Int. Joint Conf. Artificial Intelligence, Barcelona, Spain, July 16–22, 2001, pp. 254–259.

[18] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh, “Backbones and backdoors in
satisf iability,” in Proc. 20th National Conf. Artificial Intelligence, Pittsburgh, PA, July 9–13,
2005, pp. 1368–1373.
[19] W. Zhang, A. Rangan, and M. Looks, “Backbone guided local search for maximum
satisf iability,” in Proc. 18th Int. Joint Conf. Artificial Intelligence, Acapulco, Mexico, Aug.
9–15, 2003, pp. 1179–1186.
[20] P. Kilby, J. K. Slaney, and T. Walsh, “The backbone of the travelling salesperson,”
in Proc. 19th Int. Joint Conf. Artificial Intelligence, Edinburgh, Scotland, July 30/Aug. 5,
2005, pp. 175–180.
[21] M. Greiler, A. van Deursen, and M. A. Storey, “Automated detection of test f ixture
strategies and smells,” in Proc. IEEE 6th Int. Conf. Software Testing, Verification and Valida-
tion, Luxembourg, Mar. 18–22, 2013, pp. 322–331.
[22] O. Dubois and G. Dequen, “A backbone-search heuristic for eff icient solving of hard
3-SAT formulae,” in Proc. 17th Int. Joint Conf. Artificial Intelligence, Seattle, Washington,
Aug. 4–10, 2001, pp. 248–253.
[23] S. Climer and W. Zhang, “Searching for backbones and fat: A limit-crossing ap-
proach with applications,” in Proc. 18th National Conf. Artificial Intelligence and 14th Conf.
Innovative Applications of Artificial Intelligence, Edmonton, Canada, July 28/Aug. 1, 2002,
pp. 707–712.
[24] H. H. Hoos, “An adaptive noise mechanism for Walksat,” in Proc. 18th National Conf.
Artificial Intelligence and 14th Conf. Innovative Applications of Artificial Intelligence, Edmonton,
Canada, July 28/Aug. 1, 2002, pp. 655–660.
[25] S. Cai, K. Su, and C. Luo, “Improving walksat for random k-satisf iability problem
with k > 3,” in Proc. 27th AAAI Conf. Artificial Intelligence, Bellevue, Washington, July
14–18, 2013.
[26] A. Coja-Oghlan and A. M. Frieze, “Analyzing Walksat on random formulas,” SIAM
J. Comput., vol. 43, no. 4, pp. 1456–1485, July 2014.
[27] C. Qian, Y. Yu, and Z.-H. Zhou, “Analyzing evolutionary optimization in noisy
environments,” Evol. Comput., 2015.
[28] P. J. M. Laarhoven and E. H. L. Aarts, “Simulated annealing: Theory and appli-
cations,” Mathematics & Its Applications Series, vol. 37. M. Hazewinkel, Ed. Dordrecht,
 Holland: Springer-Verlag, 1987, pp. 79–83.
[29] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the size
of a test suite,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 3, pp. 270–285, July 1993.
[30] C. Gao, X. Yao, T. Weise, and J. Li, “An eff icient local search heuristic with row
weighting for the unicost set covering problem,” Eur. J. Oper. Res., vol. 246, no. 3,
pp. 750–761, Nov. 2015
[31] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical test suite
reduction techniques,” Inform. Softw. Technol., vol. 50, no. 6, pp. 534–546, May 2008.
[32] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. Lamelas Marcote, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional statement bugs
in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 34–55, Jan. 2017.
[33] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “SPOON:
A library for implementing analyses and transformations of Java source code,” Softw. Pract.
Exp., vol. 46, no. 9, pp. 1155–1179, Sept. 2016.
[34] M. Berkelaar, K. Eikland, and P. Notebaert. (2004). lp_solve 5.5.2.0 [Online]. Avail-
able: http://web.mit.edu/lpsolve_ v5520/doc/index.htm.
[35] D. Gong, T. Wang, X. Su, and P. Ma, “A test-suite reduction approach to improving
fault-localization effectiveness,” Comput. Lang. Syst. Struct., vol. 39, no. 3, pp. 95–108,
Oct. 2013.
[36] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier, and M. Monperrus,
 “B-Refactoring: Automatic test code refactoring to improve dynamic analysis,” Inform.
Softw. Technol., vol. 76, pp. 65–80, Aug. 2016.
[37] A. G. Malishevsky, G. Rothermel, and S. Elbaum, “Modeling the cost-benefits trad-
eoffs for regression testing techniques,” in Proc. Int. Conf. Software Maintenance, Montreal,
Canada, Oct. 3–6, 2002, pp. 204–213.
[38] S. Yoo and M. Harman, “Using hybrid algorithm for Pareto eff icient multi-objective
test suite minimisation,” J. Syst. Softw., vol. 83, no. 4, pp. 689–701, Apr. 2010.
[39] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic algorithms for
the quadratic assignment problem,” IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 337–352,
Dec. 2000.
[40] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm for test suite
minimization,” in Proc. ACM SIGPLAN-SIGSOFT Workshop Program Analysis for Software
Tools and Engineering, Lisbon, Portugal, Sept. 5/6, 2005, pp. 35–42.
[41] V. S. Bengolea, N. Aguirre, D. Marinov, and M. F. Frias, “RepOK-based reduction
of bounded exhaustive testing,” Softw. Test. Verif. Reliab., vol. 24, no. 8, pp. 629–655,
Dec. 2014.
[42] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining test-suite
reduction and regression test selection,” in Proc. 10th Joint Meeting Foundations Software
Engineering, Bergamo, Italy, Aug. 30/Sept. 4, 2015, pp. 237–247.
[43] C. Qian, Y. Yu, and Z. Zhou, “On constrained Boolean Pareto optimization,” in
Proc. 24th Int. Joint Conf. Artificial Intelligence, Buenos Aires, Argentina, July 25–31 2015,
pp. 389–395.
[44] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large scale next release problem
with a backbone-based multilevel algorithm,” IEEE Trans. Softw. Eng., vol. 38, no. 5,
pp. 1195–1212, Sept./Oct. 2012.
[45] H. Jiang, Z. Ren, X. Li, and X. Lai, “Transformed search based software engineer-
ing: A new paradigm of SBSE,” in Proc. 7th Int. Symp. Search-Based Software Engineering,
Bergamo, Italy, Sept. 5–7, 2015, pp. 203–218.
[46] K. Mahdavi, M. Harman, and R. M. Hierons, “A multiple hill climbing approach
to software module clustering,” in Proc. 19th Int. Conf. Software Maintenance, Amsterdam,
The Netherlands, Sept. 22–26, 2003, pp. 315–324.

