
Frequency Distribution based Hyper-Heuristic
for the Bin-Packing Problem

He Jiang1, Shuyan Zhang2, Jifeng Xuan3, and Youxi Wu4

1 School of Software, Dalian University of Technology
jianghe@dlut.edu.cn

2 School of Software Technology, Zhengzhou University
shyzhang@mail.dlut.edu.cn

3 School of Mathematical Sciences, Dalian University of Technology
xuan@mail.dlut.edu.cn

4 School of Computer Science and Software, Hebei University of Technology
wuc@scse.hebut.edu.cn ⋆

Abstract. In the paper, we investigate the pair frequency of low-level
heuristics for the bin packing problem and propose a Frequency Distri-
bution based Hyper-Heuristic (FDHH). FDHH generates the heuristic
sequences based on a pair of low-level heuristics rather than an individ-
ual low-level heuristic. An existing Simulated Annealing Hyper-Heuristic
(SAHH) is employed to form the pair frequencies and is extended to guide
the further selection of low-level heuristics. To represent the frequency
distribution, a frequency matrix is built to collect the pair frequencies
while a reverse-frequency matrix is generated to avoid getting trapped
into the local optima. The experimental results on the bin-packing prob-
lems show that FDHH can obtain optimal solutions on more instances
than the original hyper-heuristic.

Key words: hyper-heuristic, frequency distribution, bin-packing, pair
frequency

1 Introduction

In recent years, hyper-heuristics were proposed to overcome the problem-specific
drawbacks of existing heuristics. By definition, hyper-heuristics, termed ‘heuris-
tics to choose heuristics’ [1], are heuristics utilizing a high-level heuristic to
choose and assign a set of simple low-level heuristics(LLHs). The main differ-
ence between hyper-heuristics and other heuristics is that hyper-heuristics raise
the level of generality [2]. Hyper-heuristics work on a LLH space rather than

⋆ Our work is partially supported by the Natural Science Foundation of China under
Grant No. 60805024, 60903049, 61033012, the National Research Foundation for
the Doctoral Program of Higher Education of China under Grant No. 20070141020,
CAS Innovation Program under Grant No. ISCAS2009-DR01, and Natural Science
Foundation of Dalian under Grant NO. 201000117

2 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

directly on the problem space. The goal of a hyper-heuristic is to generate a
LLH sequence which can achieve a final solution to the problem at hand.

According to the search characteristics, hyper-heuristics can be classified into
two categories, namely constructive hyper-heuristics and perturbative hyper-
heuristics [3]. Constructive hyper-heuristics apply LLHs to gradually construct
a complete solution from an empty initial solution while perturbative hyper-
heuristics improve the solution quality from a complete solution. Both construc-
tive and perturbative hyper-heuristics have been applied to some problems, such
as bin-packing [4], [5], timetabling [6], [7], [8], production scheduling [9], and per-
sonal scheduling [10]. Among these problems, bin-packing is a typical problem
attracting much attention. As an NP-hard problem [11], bin-packing is to pack
all the given pieces into as few bins as possible [5].

We focus on the selection strategy for the perturbative hyper-heuristics in
this paper. As a significant component, the selection strategy is helpful to decide
the next LLH in the perturbative hyper-heuristic [3]. Most of hyper-heuristics
select the LLHs individually. However, the combination of LLHs may provide
more improvement than individual LLHs. For example, Thabtah & Cowling [12]
propose an associative classification approach to predict which LLH to combine
with the given LLH sequence.

In this paper, we investigate the frequency distribution for the combination
of LLHs and propose a Frequency Distribution based Hyper-Heuristic (FDHH).
First, we present the pair frequency of LLHs and employ the distribution of
pair frequencies to guide the further selection of LLHs. Then, we design FDHH
to solve the bin-packing problem. In FDHH, the frequency distribution is in-
corporated into an existing algorithm, a Simulated Annealing Hyper-Heuristic
(SAHH)[5]. FDHH consists of two phases: one for generating the frequency dis-
tribution and the other for guiding the hyper-heuristic. Moreover, a frequency
matrix is built to collect the pair frequencies while a reverse-frequency matrix
is utilized to avoid getting trapped in the local optimal LLH sequence. Finally,
experimental results on the bin-packing problem demonstrate that our FDHH
can obtain optimal solutions on more instances than the original hyper-heuristic,
SAHH.

The paper is organized as follows. Section 2 gives the related work. Section
3 analyses the frequency distribution and Section 4 describes FDHH. Section 5
reports the experimental results on the bin-packing problem. Finally, conclusion
and future work are given in Section 6.

2 Related Work

2.1 Combination of LLHs

The combination of LLHs is a new technology to enlarge the granularity of the
LLHs when selecting heuristics in hyper-heuristics. To our knowledge, the mostly
related work is an associative classification based hyper-heuristics for combining
an LLH with the existing ones [12]. This algorithm can be viewed as a trade-off

Frequency Distribution based Hyper-Heuristic for the Bin-Packing Problem 3

between the greediness degree and the randomness degree for LLHs. Moreover,
some other approaches are proposed to explore the characteristics of LLHs. For
example, Chakhlevitch & Cowling [13] investigate the learning strategies for
choosing the subset of the fittest LLHs for hyper-heuristic design; Ren et al.
[14] propose a bipartite-graph based approach to distinguish intensification and
diversification sets of LLHs for reducing the search space. In this paper, our
approach attempts to analyse the distribution for pair frequencies of LLHs and
then to further guide the selection of LLHs.

2.2 Bin-Packing Problem

The bin-packing problem is a well-known NP-hard problem in real-world ap-
plications [11]. Given a set of pieces P = {p1, p2, . . . , pk}, an unlimited set of
bins, a weight ai for the piece pi, and an identical capacity c for each bin, the
bin-packing problem is to pack all pieces into bins with the goal to minimize
the number of used bins. A solution x to the bin-packing problem is a set of
used bins with all pieces packed in the bins. We give the formal definition of
the bin-packing problem in Equation (1). In the definition, both yj and xi,j are
binary values. The value 1 of yj denotes that the jth bin is used; otherwise, 0
denotes not. The value 1 of xi,j denotes that the piece pi is assigned into the
bin j; otherwise, 0 denotes not. The constraints suggest that the sum weight of
pieces in a bin cannot exceed the capacity c and each piece must be packed in
one bin. The objective function is the number of the used bins.

min f (x) =
k∑

j=1

yj (1)

s.t.
∑k

i=1 aixi,j ≤ cyj , j ∈ {1, . . . , k}∑k
j=1 xi,j = 1

2.3 LLHs

In this part, we introduce the LLHs for the bin-packing problem. These LLHs
can be combined into a sequence in a hyper-heuristic and each LLH in this
sequence is used for enhancing the solution quality or to get the solution out of
local optima. We choose 6 simple LLHs from the LLH list in competition CHeSC
[15] for the bin-packing problem. Due to the paper length limit, we briefly list
their functions as follows. h1, to swap from lowest bin; h2, to split a bin; h3,
to swap; h4, to repack the lowest filled bin; h5, to destroy 3 highest bins; h6, to
destroy 3 lowest bins.

2.4 Simulated Annealing Hyper-Heuristic

The Simulated Annealing Hyper-Heuristic (SAHH) proposed by Bai et al. [5] is
a typical hyper-heuristic for the bin-packing problem. We briefly introduce this
algorithm as follows.

4 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

Table 1. Framework of SAHH algorithm

Algorithm: SAHH
Input: pro,H,W, t, total iter, LP, β
Output: the LLH sequence.

(1) s = Generate Initial Solution(pro,H);
(2) while current iter < total iter do

(2.1) hi = Stochastic Heuristic Selection(H,W);
(2.2) s′ = Heuristic Application(s, hi);
(2.3) s = Simulated Annealing Acceptance (s′, s, t);
(2.4) t = Temperature Resetting(t, β);
(2.5) // short term learning

If mod(current iter, LP) = 0 then
(2.5.1) C = Performance Calculation(LP);
(2.5.2) W = Weight Resetting(C);

Endwhile

Besides the similar framework of other hyper-heuristics, SAHH adopts three
special strategies: stochastic heuristic selection, simulated annealing acceptance,
and short term learning. The details are shown in Table 1. Given a test instance
pro and a set of perturbative LLHs H = {h1, h2, . . . , hn}, SAHH generates an
initial solution s and retains s as the current solution (step (1)). Thereafter, an
iteration consisting of five steps, namely selection, application, acceptance, reset-
ting, and learning begins to iteratively update the current solution (step (2)). In
step (2.1), stochastic heuristic selection strategy selects a heuristic hi according
to its weight wi (wi ∈ W). Then SAHH applies hi to the current solution s and
generates a new solution s′ (step (2.2)). In step (2.3), the simulated annealing
acceptance decides whether s′ is accepted as the current solution depending on
the current temperature t. Next, step (2.4) resets the temperature. In this step,
SAHH checks whether the current temperature t should be decreased, increased
or unchanged. The current temperature is changed according to t = t/(1 + βt)
when decreasing, or t = t/(1 − βt) when increasing. Since the performance of
the LLHs varies during different periods, SAHH introduces short term learning
with LP as the length of one learning period (step (2.5)). In this step, SAHH
calculates a performance ci of each LLHs hi and resets the weights wi (ci ∈ C)
based on LP iterations. Finally, SAHH returns a LLH sequence to generate the
final solution to the problem.

3 Frequency Distribution

In this section, we introduce the notion of pair frequency and analyse the fre-
quency distribution using the LLH sequences of SAHH for the bin-packing prob-
lem.

Frequency Distribution based Hyper-Heuristic for the Bin-Packing Problem 5

3.1 Pair Frequency and Frequency Matrix

Given a set of LLHs H = {h1, h2, . . . , hn} and the fixed length m of sequences,
the size of heuristic space is nm. Then it is intractable to obtain the optimal
sequence in polynomial time for large n and m. However, we can obtain ap-
proximate optimal sequences instead. From the view of the graph theory, each
sequence in the heuristic space is acquired by traversing a fully connected graph
[14] whose vertexes are n LLHs. When a hyper-heuristic traverses the graph, the
information guiding the search from one heuristic to another is significant. We
employ the pairs of LLHs (the edges in a graph) to help to express the associa-
tion by their frequencies. In this paper, hi,j denotes the pair that starts with hi

and ends with hj (i, j ∈ {1, . . . , n}). Therefore, instead of analysing heuristics
individually, we tend to analyse the pairs of LLHs.

We define a frequency matrix F for a given heuristic sequence. In F, an
element Fi,j denotes the pair frequency of hi,j . Considering a set of n LLHs,
H = {h1, h2, . . . , hn}, there are totally n × n different pairs of LLHs, i.e.,
h1,1, . . . , h1,n, h2,1, . . . , h2,n, . . . , hn,1, . . . , hn,n. Then, the size of the frequency
matrix F is n × n. Let L = (l1, l2, . . . , lm) be the sequence obtained by SAHH
and m is the length of L. It can intuitively conclude that a set of pairs defined
as LC = {l1,2, l2,3, . . . , lm−1,m} lies in L where li,i+1 is the pair combined by
the ith and (i+1)th LLHs in L. Here, |LC| = m− 1. We let ti,j be the number
of occurrences of hi,j in LC. According to this knowledge, the element Fi,j is
formally defined as

Fi,j = ti,j/|LC| (i, j ∈ {1, . . . , n}) (2)

3.2 Frequency Distribution Analysis

In this section, we visualise the frequency distributions based on the pair fre-
quencies. According to Section 3.1, the values of pair frequencies require the
knowledge of existing sequences to build the frequency matrix. For a given in-
stance, SAHH is run for ten rounds independently and ten distinct sequences
are obtained. These sequences are thereafter used to produce frequency matrixes
respectively. Thus, we illustrate the frequency distributions from these ten ma-
trixes in one figure. We set all the parameters of SAHH according to [5] except
choosing 6 LLHs in Section 2.3.

The instances in our experiments are from three widely used classes of bin-
packing problem instances: Uniform (80 instances), Triplet (80 instances), and
Sch set (1210 instances) which have been shown and investigated in [5], [16]
and [17]. The detailed descriptions of these classes of instances are described
in Section 5. Due to the paper length limit, we only illustrate the frequency
distributions for four selected instances: U120 00, T249 02, N3C3W4 M, and
N4W3B1R4. Similar tendencies can be found for the other instances. The se-
lected instances are described in Table 2.

Fig. 1 illustrates the frequency distributions of U120 00, T249 02, N3C3W4 M,
and N4W3B1R4. Each sub-figure plots ten frequency distributions from ten dif-
ferent sequences {L1, L2, . . . , L10} of the corresponding instance. The horizontal

6 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

Table 2. Characteristics of four selected bin-packing problem instances

Instance Instance class Piece number Weight range Capacity

U120 00 Uniform 120 [20, 100] 150
T249 02 Triplet 249 [250, 500] 1000
N3C3W4 M Sch set 200 [30, 100] 150
N4W3B1R4 Sch set 500 [114, 168] 1000

axis shows the pairs (the index in the horizontal axis is set as(i − 1) × 6 + j
for hi,j , e.g., Index 9 is for h2,3, and Index 25 is for h5,1) while the vertical axis
indicates the pair frequencies.

0 6 12 18 24 30 36
0

0.05

0.1

0.15

Pair

F
r
e
q
u
e
n
c
y

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

0 6 12 18 24 30 36
0

0.05

0.1

0.15

Pair

F
r
e
q
u
e
n
c
y

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

 (a) Frequency distributions of U120_00 (b) Frequency distributions of T249_02

0 6 12 18 24 30 36
0

0.05

0.1

0.15

Pair

F
r
e
q
u
e
n
c
y

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

0 6 12 18 24 30 36
0

0.05

0.1

0.15

Pair

F
r
e
q
u
e
n
c
y

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

 (c) Frequency distributions of N3C3W4_M (d) Frequency distributions of N4W3B1R4

Fig. 1. Illustrations of frequency distributions

From Fig. 1, we make four observations.First, for one instance, ten frequency
distributions generated by ten distinct LLH sequences are quite similar, espe-
cially for T249 02 and N4W3B1R4. Second, for one instance, different pairs
have different frequency values. Third, for different instances, the frequency dis-
tributions are somewhat similar but not identical across the four instances; note
that all the sub-figures show that the average frequencies of pairs started with
h1, h2, h3, and h5 are larger than that those started with h4 and h6, yet frequen-

Frequency Distribution based Hyper-Heuristic for the Bin-Packing Problem 7

cies of the same pair (e.g., h2,1) are different for the four instances. Fourth, the
pairs of LLHs can be classified into two categories according to the values of fre-
quencies: pairs with large frequencies and pairs with small frequencies, e.g., the
frequency 0.05 can be viewed as one boundary among the frequencies. According
to sequences generated by SAHH, large pair frequencies for the combination of
the two LLHs are likely to improve the solution quality while the remaining pairs
tend to decrease the solution quality.

4 Frequency Distribution Based Hyper-Heuristic

Based on the frequency matrixes in Section 3, we propose a Frequency Distri-
bution based Hyper-Heuristic (FDHH). In FDHH, an existing hyper-heuristic,
SAHH is used to generate the pair frequencies and then SAHH is extended into
a Frequency based Simulated Annealing Hyper-Heuristic (FSAHH) to guide the
LLHs. In FSAHH, a reverse-frequency matrix is proposed to promote the search
process. In this section, we first give a reverse version of the frequency ma-
trix. Then, we propose FSAHH based on the frequency matrix and the reverse-
frequency matrix. Finally, we present the framework FDHH, which employs both
SAHH and FSAHH as sub-algorithms.

4.1 Reverse-Frequency Matrix

After choosing one heuristic hlast, the next LLH hi is selected according to the
pair frequencies hlast,1, hlast,2, . . . , hlast,n. If the frequencies are in the frequency
matrix F, as shown in Section 3, pairs with larger frequency values are more
likely to be chosen and this leads to get trapped in local optima.

As a result, in order to get out of local optima, sometimes, a reverse-frequency
matrix should be utilized to increase the small pair frequencies and to decrease
the large pair frequencies. For the reverse-frequency matrix R, its element Ri,j

is the reverse-frequency of pair hi,j (i, j ∈ {1, . . . , n}). Each row Ri is created
by exchanging the qth largest element with the qth smallest element in Fi,
q ∈ {1, . . . , n/2}. Ri and Fi are reverse-frequencies and frequencies of pairs
started with the LLH hi. For instance, with n = 6, in the first row of F , if F1,1

has the largest frequency value, and F1,4 has the smallest frequency value. Then
set R1,1 to F1,4 and R1,4 to F1,1. If F1,2 has the second largest frequency value,
and F1,6 has the second smallest frequency value, we set R1,2 to F1,6 and R1,6

to F1,2. At last, if F1,3 has the third largest frequency value, and F1,5 has the
third smallest frequency value, we set R1,3 to F1,5 and R1,5 to F1,3. Therefore,
the first row R1 is generated. The other rows of R can be generated under the
same method.

4.2 Frequency Based Simulated Annealing Hyper-Heuristic

Based on the frequency matrix and the reverse-frequency matrix, we propose
FSAHH. FSAHH employs three new strategies: Frequency Based Selection, Count Value Updating,
and Interval Disturb. We show their details as follows.

8 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

Table 3. Framework of FSAHH algorithm

Algorithm: FSAHH
Input: pro,H, t, total iter, LP, β,maxV, F,R
Output: the best solution

(1) initialize v = 0 and ts = t;
(2) s = Generate Initial Solution(pro,H);
(3) while current iter < total iter do

(3.1) hi = Frequency Based Selection (H,F);
(3.2) s′ = Heuristic Application(s, hi);
(3.3) v = Count Value Updating (s′, s);
(3.4) s = Simulated Annealing Acceptance (s′, s, t);
(3.5) t = Temperature Resetting(t, β);
(3.6) if v equals to maxV then

s = Interval Disturb(s,R, ts);
current iter = current iter + LP ;

Endwhile

Frequency Based Selection: Given a set of LLHs H = {h1, h2, . . . , hn} and
a frequency matrix F (or a reverse-frequency matrix R), this strategy selects a
LLH hi under matrix F (or R). To start the procedure, given the last used LLH
hlast, the first hi is chosen randomly; the other hi is selected under the frequency
Flast,i (or Rlast,i).

Count Value Updating : Given a counter v which records the number of con-
tinuously unimproved solutions, this strategy updates v by comparing objective
functions of the current solution s and the new solution s′. There are four cases.
In case 1, f(s′) < f(s), then set v = 0; in case 2, f(s′) > f(s), then set v = v+1;
in case 3, f(s′) = f(s) and s′ is different from s, then set v = 0; in case 4,
f(s′) = f(s) and s′ = s, then set v = v + 1.

Interval Disturb: This strategy is a standard simulated annealing method us-
ing a reverse-frequency matrix R and a high starting temperature t to escape
from the local optima. Given a current solution s, matrix R, and temperature
t, Interval Disturb consists of 4 steps. Step (1) selects a heuristic hi by Fre-
quency Based Selection strategy with R as the based matrix. Step (2) applies hi

to s and generates a new solution s′. Step (3), with t as the current temperature,
accepts s′ as the current solution by Simulated Annealing Acceptance strategy
(the same with step (2.3) in Table 1). Step (4) decreases the temperature t
(sets t = t/(1 + βt)). Interval Disturb totally repeats step (1)-(4) LP times and
returns the best solution. β and LP are the same as those in Table 1.

We present the details of FSAHH in Table 3. It works as follows. After gen-
erating an initial solution s with the same manner used in SAHH, FSAHH runs
6 steps iteratively (step (3)). In step (3.1), we utilize Frequency Based Selection
strategy and a frequency matrix F of a given test instance to select a LLH
hi. Then, we apply hi to the current solution s to generate a new solution s′ in
step (3.2). Next in step (3.3), the counter v is updated by Count Value Updating

Frequency Distribution based Hyper-Heuristic for the Bin-Packing Problem 9

method with s and s′ as input parameters. After that, in step (3.4) and (3.5), we
adopt Simulated Annealing Acceptance to decide whether s′ should be accepted
as the current solution, and Temperature Resetting method to reset the current
temperature t. Detailed explanations are corresponding to step (2.3) and (2.4)
of Table 1, respectively. The last step is trying to escape from the local optima
(step (3.6)). When v = maxV (maxV is set to LP/5 in the experiments), it can
be viewed as the algorithm has already been trapped in the local optima. Then
Interval Disturb is triggered with the current solution s, the reverse-frequency
matrix R, and the starting temperature ts as input parameters. Note that, in
Interval Disturb, there is a loop which executes LP times. Thus, after running
Interval Disturb, add LP to current iter. The iteration runs until current iter
equals to total iter. At last, the best solution is returned.

4.3 Framework

In this section, we present the framework of FDHH, which employs SAHH and
FSAHH as subroutine algorithms. We present the framework of FDHH in Table
4. For a given test instance, first, SAHH is run learn iter times (learn iter is set
to 10 in the experiments) to achieve a set of distinct LLH sequences denoted as
LS = {L1, L2, . . . , Llearn iter} which are used for learning in next steps. Then, in
step (2), the average frequency matrix aveF is generated utilizing the sequence
set LS. After that, in step (3), the average reverse-frequency matrix aveR is
transferred from aveF. As preconditions aveF and aveR have been established,
then in step (4), FSAHH is run learn iter times with aveF and aveR as two
parameters. Finally, the best solution is returned in step (4).

Table 4. Framework of FDHH algorithm

Algorithm: FDHH
Input: pro,H,W, t, total iter, LP, β,maxV, learn iter
Output: the best solution s∗

initialise s∗ as a random solution
(1) for i = 1 to learn iter

Li = SAHH(pro,H,W, t, total iter, LP, β);
End for

(2) aveF = Getting Average Frequency Matrix (LS);
(3) aveR = Getting Average Reverse Frequency Matrix(aveF);
(4) for i = 1 to learn iter

si = FSAHH(pro,H, t, total iter, LP, β,maxV, aveF, aveR);
if (f(si) < f(s∗)) then

s∗ = si;
End for

10 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

5 Experimental Results

In this section, we apply our FDHH to the bin-packing problem. To evaluate
our algorithm, experiments are conduct on three classes of bin-packing instances
(totally 1370 instances).

The first class (Uniform class) has 80 instances totally with c = 150, and
ai ∈ [20, 100]. There are 4 sub classes in Uniform class: Fal U120, Fal U250,
Fal U500, and Fal U1000, each of which has 20 test instances with k = 120, 250,
500, and 1000, respectively.

The second class (Triplet class) also has 80 instances with c = 1000, and ai ∈
[250, 500]. There are 4 sub classes in Triplet class: Fal T60, Fal T120, Fal T249,
and Fal T501, each of which has 20 test instances with k = 60, 120, 249, and 501,
respectively. In a more complex class, Triplet, each bin of the optimal solution
must be fully filled with 3 pieces.

The third class (Sch set) contains 1210 instances with 3 sub classes: Sch set1
(720 instances), Sch set2 (480 instances), and Sch set3(10 instances). In Sch set1,
c ∈ {100, 120, 150}, and ai distributes in [1, 100], [20, 100], or [30, 100]. In
Sch set2, c = 1000, and ai satisfies that three to nine pieces pack in one bin.
For both Sch set1 and Sch set2, k ∈{50, 100, 200, 500}. Sch set3 is harder than
Sch set1 and Sch set2 with c = 100000, ai ∈[20000, 35000] and k = 200.

Uniform class and Triplet class are introduced by [18] and Sch set class is
generated by [19]. For all instances in the Uniform and Triplet classes, the opti-
mal solution is known [20]. Their instances and corresponding optimal objective
values can be downloaded (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/binp
ackinfo.html). In Sch set, 1184 instances have been solved optimally. The in-
stances and optimal objective values (or the best known lower bound) can be
downloaded (http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm).

Experiments are performed under Win XP on a Pentium Dual Core 2.8 GHx
with 4G memory PC. All the source codes are implemented in Java, compiled
using JDK 6.20. We run FDHH on the 1370 test instances, and for comparison,
we run SAHH on the same instances independently. The source code of SAHH
is implemented according to [5]. All parameters of SAHH are extracted from [5]
except the set of LLHs.

Table 5 presents the comparative results of our proposed FDHH (running one
time with learn iter = 10) and SAHH (running 2× learn iter times). ‘Instance
class’ column shows the names of test instance classes. ‘Num’ indicates the num-
ber of test instances in each sub class. ‘Hits’ denotes the number of instances
that can arrive at the optimal objective value (or the best known lower bound).
‘Max dev.’ is the maximum absolute deviation from the objective values in the
worst case to the optima over all instances in a class. From ‘Hits’ columns of Ta-
ble 5, we can see that FDHH achieves 1094 optimal solutions (out of 1370) while
SAHH gets 1085 optimal solutions. Besides, as shown in ‘Max dev.’ columns, it
is easy to summarize that the worst solutions generated by FDHH is closer to
optima than that generated by SAHH. Note that the numerical results of SAHH
are different from those reported in [5] due to the difference between the chosen
LLHs.

Frequency Distribution based Hyper-Heuristic for the Bin-Packing Problem 11

Table 5. Comparative results of SAHH and FDHH

Instance class Num
SAHH FDHH

Hits Max dev. Hits Max dev.

Fal U120 20 17 1 18 1
Fal U250 20 20 0 20 0Uniform
Fal U500 20 20 0 20 0
Fal U1000 20 16 3 17 2

Fal T60 20 0 1 0 1
Fal T120 20 0 1 0 1Triplet
Fal T249 20 0 3 0 1
Fal T501 20 0 3 0 2

Sch Set1 720 669 2 672 1
Sch Set Sch Set2 480 340 2 343 1

Sch Set3 10 3 2 4 1

All - 1370 1085 3 1094 2

6 Conclusion and Future Work

In this paper, we study the frequency distributions of LLH sequences and de-
sign the frequency distribution based hyper-heuristic (FDHH). To build the fre-
quency distribution for the algorithm design, we propose the notation of pair
frequency to investigate the characteristics of the combination of LLHs. Ex-
perimental results on the bin-packing problem indicate that FDHH can obtain
optimal solutions on more instances than the original hyper-heuristic, SAHH.
The experience on the frequency distribution in this paper can be drawn on to
design other hyper-heuristics.

In future work, we plan to design a selection strategy based on the combina-
tion of multiple LLHs. On the other hand, the multiple granularity combination
may be more effective than the single granularity. Since the multiple granularity
of combination of LLHs enlarges the complexity of our algorithm, it is necessary
to design a new strategy to dynamically decide the size of the combination of
the LLHs. Moreover, it is useful to give a large empirical study or develop the
theoretical analysis for providing a relatively exact approach for deciding the
size of the combination.

References

1. Burke, E.K., Hart, E., Kendall,G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An Emerging Direction in Modern Search Technology. In: Glover, F.,
Kochenberger, G. (eds) Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)

2. Ochoa, G., Vaquez-Rodŕiguez, J.A., Petrovic, S., Burke, E.K.: Dispatching Rules
for Production Scheduling: a Hyper-heuristic Landscape Analysis. In: Proceedings
of the IEEE CEC, pp. 1873–1880. Trondheim, Norway (2009)

12 He Jiang, Shuyan Zhang, Jifeng Xuan, and Youxi Wu

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: A Survey of
Hyper-heuristics. Technical Report, School of Computer Science and Information
Technology, University of Nottingham, Computer Science (2009)

4. Ross, P., Marin-Blazquez, J.G., Schulenburg, S., Hart, E.: Learning a Procedure
that Can Solve Hard Bin-packing Problems: A new GA-based Approach to Hyper-
heuristics. In: Proceedings of the GECCO, pp. 1295–1306. Springer, Berlin (2003)

5. Bai, R., Blazewicz, J., Burke, E.K., Kendall, G., McCollum, B.: A Simulated Anneal-
ing Hyper-heuristic Methodology for Flexible Decision Support. Technical report,
School of CSiT, University of Nottingham (2007)

6. Qu, R., Burke, E.K.: Hybridisations within a Graph Based Hyper-heuristic Frame-
work for University Timetabling Problems. JORS. 60, 1273–1285 (2008)

7. Qu, R., Burke, E.K., McCollum, B.: Adaptive Automated Construction of Hybrid
Heuristics for Exam Timetabling and Graph Colouring Problems. EJOR. 198, 392–
404 (2008)

8. Bilgin, B., Ozcan, E., Korkmaz, E.E.: An Experimental Study on Hyper-heuristics
and Final Exam Scheduling. In: Proceedings of the International Conference on
the Practice and Theory of Automated Timetabling, pp. 123-140. Springer, Berlin
(2007)

9. Vazquez-Rodriguez, J.A., Petrovic, S., Salhi, A.: A Combined Meta-heuristic with
Hyper-heuristic Approach to the Scheduling of the Hybrid Flow Shop with Sequence
Dependent Setup Times and Uniform Machines. In: Proceedings of the 3rd Multi-
disciplinary International Scheduling Conference, pp. 506–513. Paris, France (2007)

10. Han, L., Kendall, G.: Guided Operators for a Hyper-heuristic Genetic Algorithm.
In: Proceedings of AI-2003: Advances in Artificial Intelligence, pp.807-820. Perth,
Australia (2003)

11. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons (1990)

12. Thabtah, F. Cowling, P.: Mining the Data from a Hyperheuristic Approach Using
Associative Classification. Expert Systems with Applications. 34 (2), pp. 1093–1101
(2008)

13. Chakhlevitch, K., Cowling, P.: Choosing the Fittest Subset of Low Level Heuristics
in a Hyperheuristic Framework. In: Proceedings of 5th European Conference on
EvoCop, pp. 25-33. Springer, Lausanne, Switzerland (2005)

14. Ren, Z., Jiang, H., Xuan, J., Luo, Z.: Ant Based Hyper Heuristics with Space Re-
duction: A Case Study of the p-Median Problem. In: 11th International Conference
on PPSN, pp.546–555. Springer, Krakow, Poland (2010)

15. Cross-domain Heuristic Search Challenge, http://www.asap.cs.nott.ac.uk/chesc2011
/index. html

16. Fleszar, K., Hindi, K.S.: New Heuristics for One-dimensional Bin-packing. Com-
puters and Operations Research. 29(7), 821-839 (2002)

17. Alvim, A. C. F., Ribeiro, C.C., Glover, F., Aloise, D.J.: A Hybrid Improvement
Heuristic for the One Dimensional Bin Packing Problem. Journal of Heuristics. 10,
205-229 (2004)

18. Falkenauer, E.: A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal
of Heuristics. 2, 5-30 (1996)

19. Scholl, A., Klein, R., Jurgens, C.: BISON: A Fast Hybrid Procedure for Exactly
Solving the One Dimensional Bin Packing Problem. Computers & Operations Re-
search. 24(7), 627-645 (1997)

20. Valerio de Carvalho, J.M.: Exact Solution of Bin-packing Problems Using Col-
umn Generation and branch-and-bound. Annals of Operations Research. 86, 629-659
(1999)

