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ABSTRACT 
The next release problem (NRP) aims to effectively select 
software requirements in order to acquire maximum customer 
profits. As an NP-hard problem in software requirement 
engineering, NRP lacks efficient approximate algorithms for large 
scale instances. The backbone is a new tool for tackling large 
scale NP-hard problems in recent years. In this paper, we employ 
the backbone to design high performance approximate algorithms 
for large scale NRP instances. Firstly we show that it is NP-hard 
to obtain the backbone of NRP. Then, we illustrate by fitness 
landscape analysis that the backbone can be well approximated by 
the shared common parts of local optimal solutions. Therefore, we 
propose an approximate backbone based multilevel algorithm 
(ABMA) to solve large scale NRP instances. This algorithm 
iteratively explores the search spaces by multilevel reductions and 
refinements. Experimental results demonstrate that ABMA 
outperforms existing algorithms on large instances in terms of 
solution quality and running time.   

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications –
Methodologies; I.2.8 [Artificial Intelligence]: Problem Solving, 
Control Methods, and Search - Heuristic methods  

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Next Release Problem (NRP), Multilevel Algorithm, Requirement 
Engineering, Approximate Backbone 

1. INTRODUCTION 
The next release problem (NRP) is a combinatorial optimization 
problem in software requirement engineering proposed by 
Bagnall, et al. in 2001 [1]. This problem seeks to maximize the 
customer profits from a set of dependent requirements, under the 

constraint of a predefined budget bound. NRP and its variants 
have attracted much attention in requirement engineering, such as 
component selection and prioritization [2], multi-objective next 
release problem (MONRP) [5][11][22], and release planning 
[18][19]. There are numerous applications of NRP in requirement 
analysis [9][10][18]. Some further researches on NRP have been 
conducted, including fairness analysis in requirement assignment 
[5], multi-objective search based approaches for software project 
planning [8], and sensitivity analysis in requirement engineering 
[11]. 

NRP has been proved as “  even when it is basic and 
customer requirements are independent” [1], i.e., no exact 
algorithm exists to achieve global optimal solutions in polynomial 
time unless 

NP hard−

P NP=  [6]. In practice, it is straightforward to find 
approximate algorithms to obtain near-optimal solutions within 
polynomial time. In the literature, many approximate algorithms 
have been proposed for NRP and its variants, including greedy 
algorithms [1][11], greedy randomized adaptive search procedure 
(GRASP) [1], local searches (e.g., sampling hill climbing and 
simulated annealing) [1][2], genetic algorithm [19], etc. Among 
these algorithms, a simulated annealing algorithm by Lundy & 
Mees (LMSA) [14] is the best one for solving NRP approximately. 
LMSA can work efficiently on small instances of this problem, 
but there is an absence of approximate algorithms for large 
instances (an instance is generated by specifying particular values 
for all the parameters of a problem [6]). 

As an effective tool for approximate algorithm design, the 
backbone has been one of the hot topics of research on NP hard−  

n recent years. The backbone is defined as the common 
parts of all global optimal solutions for a problem instance [3]. If 
the backbone is obtained, the global optimal solutions can be 
partly constructed. By fixing this part of global optimal solutions, 
the scale of the original instance can be reduced. Thus, an ideal 
approach is to obtain the backbone and then reduce the difficulty 
for solving a problem instance. However, since it is usually 
intractable to obtain the backbone of NP ha− ms, most 
of algorithms choose to construct the approximate backbone with 
the common part of local optimal solutions instead. Dubois & 
Dequen [3] investigate an approximate backbone based heuristic 
algorithm for solving the hard 3-satisfiability problem (3-SAT). 
Zhang, et al. [21] design a backbone based approximate algorithm 
for maximum satisfiability problem (Max-SAT). Kilby, et al. [13] 
develop an approximate backbone based algorithm for traveling 
salesman problem (TSP). Jiang, et al. [12] present an approximate 
backbone based ant colony algorithm for quadratic assignment 
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problem (QAP). Apart from the algorithms for above classic 
optimization problems, there is only one backbone based 
algorithm for the problems in software engineering to our 
knowledge. Mahdavi, et al. [15] propose a “building block” based 
multiple hill climbing approach for software module clustering 
problem. In their approach, the concept of building blocks is 
similar to that of the approximate backbone when applying search 
based approaches to the problems in software engineering.  

As a new problem in the family of  problems, NRP has 
not been well investigated on either theoretical analysis or 
algorithm design. Since NRP is a practical problem in 
requirement engineering, it is necessary to develop an algorithm 
for large instances arising in real-world applications. In this paper, 
we propose an approximate backbone based multilevel algorithm 
(ABMA) for solving large NRP instances. In contrast to existing 
algorithms, our new algorithm can reduce and refine the instances 
by fixing the approximate backbone iteratively. Firstly, we prove 
that it is  to obtain the backbone of NRP. In the proof, 
we map any instance to a biased instance with a unique optimal 
solution, which is also optimal to the original instance. Secondly, 
we present the similarity between local optimal solutions and 
global optimal solutions by fitness landscape analysis. Then the 
approximate backbone can be constructed with the common parts 
of local optimal solutions based on the similarity. Thirdly, ABMA 
is proposed to solve NRP. This algorithm includes two iterative 
phases: reduction and refinement. The reduction phase iteratively 
reduces the instance to obtain a new smaller instance by fixing the 
approximate backbone; the refinement phase combines the 
solution of this instance and the approximate backbones into a 
solution for the original instance. Since LMSA, the best 
approximate algorithm for NRP up till now, cannot work 
efficiently for large instances, we design greedy climbing search 
(GCS), a hill climbing operator based on a greedy strategy. GCS 
is incorporated into ABMA as a local search operator. Finally, 
experiments are conducted on extensive instances to evaluate the 
performance of our new algorithm. Experimental results show 
that ABMA can achieve better performance on large instances 
than existing algorithms.  

NP hard−

NP hard−

The primary contributions of this paper are as follows:  

First, this paper presents the theoretical analysis of the 
computational complexity for obtaining the backbone in NRP, i.e., 
it is  to obtain the backbone of NRP. NP hard−

Second, this paper shows a multilevel algorithm to reduce the 
scale of instances by fixing the approximate backbone. This 
algorithm can work well on large scale instances. Some similar 
strategies can also be applied to other   problems. NP hard−

Finally, this paper presents how to incorporate the backbone into 
an approximate algorithm for solving NRP. It is the first 
application of the backbone to requirement engineering. Some of 
the complex problems in requirement engineering can be 
approximately solved by the backbone based algorithms, 
especially  problems. NP hard−

The remainder of this paper is organized as follows. Section 2 
states the related definitions of NRP. Section 3 presents the 
computational complexity results for the backbone. Section 4 
introduces the approximate backbone based multilevel algorithms 
for NRP. Section 5 presents the experimental results. Section 6 

briefly concludes this paper and points out the potential ways in 
future work. 

2. PRELIMINARIES 
In this section, we introduce the application scenario for NRP and 
then give some related definitions and properties. 

When a software company decides to upgrade its software, many 
candidate requirements can be included in the next release (e.g., 
the version upgrading of a web browser, Google Chrome [7] or 
the version upgrading of an integrated development environment, 
Eclipse [4]). On one hand, it is usually too expensive to 
implement all the requirements for this software company. On the 
other hand, every customer may request a fraction of those 
candidate requirements and provides a potential commercial profit 
for the software company. When all the requirements requested 
by a customer have been implemented, the software company can 
gain the profit from this costumer. In addition, there may be some 
dependency relationships among those candidate requirements in 
a real-world software project, i.e., a requirement can only be 
implemented after some other ones. NRP aims to determine a 
subset of those candidate requirements under a predefined budget 
bound so that this company could achieve maximum profits from 
its customers. 

According to this application scenario, we give the formal 
definitions of NRP as follows. In a software system, let R  be the 
set of all candidate requirements and the cardinality of R  is 
defined as R m= . Every requirement ir  (R∈ 1 i m≤ ≤ ) is 
associated with a nonnegative cost ic . A directed acyclic graph 

( , )G R E=  denotes the dependency relationships among those 
requirements, where R  is the set of vertexes and E  is the set of 
arcs. An arc ( , )r r E′ ∈  indicates that requirement r  depends on 
r′ . Let  be the set of requirements, which can reach r  
via one or more arcs. Obviously, all the requirements in 

 must be listed in the development plan before r  is 
available in the next release. 

( )parents r

( )parents r

Let {1,2, , }S n= "  be all the customers related to those 
requirements. Every customer i  requests a set of requirements 

iR R⊆ . Let iw W∈  be the profit gained from customer i . Let  
ii r R∈  and ( ) ( )parent R partent r= ∪ ˆ ( )i i iR R parent R= ∪ . Under the 

above definitions, a customer i  can be satisfied, if and only if all 
the requirements in ˆ

iR  are listed in the release. Let 
ˆ

j i
( )ˆ

jr R∈  be the cost for satisfying customer i . Let 
 be a subset of customers satisfied. The cost of S

iRcost c= ∑
S S′ ⊆ ′ is 
defined as  and the overall profit obtained 
is . 

ˆ( ) ( )i S icost cosS t R∈′ = ∪ ′

( ) i S iS wω ′∈′ = ∑

Given an NRP instance (denoted as  ), a feasible 
solution is a subset S  subject to , where B  is a 
predefined development budget bound. To facilitate the following 
discussion, we also formulate a feasible solution as a set of 
ordered pairs. For a feasible solution , its ordered pair form 
is defined as

( , , )NRP S R W
S′ ⊆ ( )cost S B′ <

S S′ ⊆
{( , ) , 1X i b i S b′= ∈ =  or . Similarly, we 

also define ( ,1)

, 0i S b′∉ = }
ˆ) (( )i X icost X c s Ro t ∈= ∪  and ( ,1) i∈ . 

Obviously, it is easy to convert 
( ) i XX wω = ∑

X  and  into each other. Let S ′
BF  be the set of all the feasible solutions for an instance 

. The goal of NRP is to find a feasible solution ( , , )NRP S R W
* BX F∈  such that . ( *) max ( )

BX Fω ω∈X X=



Given an NRP instance , let  be 
the set of all global optimal solutions. The backbone of 

 is defined as 1 . Given an NRP 
instance , its biased instance is defined as 

, where . In other 
words, the biased instance can be viewed as an NRP instance with 
noise profits. Obviously, it takes  running time to construct 
the biased instance for an NRP instance. 

( , , )NRP S R W *
1 2{ , , , }tX X X∗ ∗Π = "

( , , )NRP S R W ( , , ) t
i ibone S R W X ∗
== ∩

( , , )NRP S R W
ˆ( , , )NRP S R W ˆ ˆ ˆ{ | 1 / 2 , }i

i i iW w w w i S= = + ∈

( )O n

In the following part, a simple NRP instance (this example is 
extracted from the data of a communication company [18]) is 
illustrated with 3 customers and 8 requirements. Table 1 shows 
the descriptions of these 8 requirements. Figure 1 shows the 
dependency relationships and the requirements requested by 
customers, where the arrows from above to below indicate the 
dependency relationships. For requirement set 1 2 8{ , ,..., }R r r r= , let 
the cost of these requirements  be , 
respectively.  

1 2 8, ,...,c c c 6,10,16,4,1,7,6,1

 

Table 1. Requirements of a communication company 

Requirement Description Cost
1 Cost Reduction of Transceiver 6
2 Expand Memory on BTS Controller 10
3 FCC Out-of-Band Emissions 16
4 Software Quality Initiative 4
5 USEast Inc. Feature 1 1
6 USEast Inc. Feature 2 7
7 China Feature 1 6
8 China Feature 2 1

 

r1 r2

r3 r4 r5 r6

r7 r8

1 32

requirement

customer

Figure 1. Dependency of customers and requirements

 

Given a cost ratio 0.7, the budget bound 
i Rr i∈  

(simplified to be an integer). The requirements requested by the 3 
customers are 1 3

360.7B c∑ ≈= i

4 2 7 8 3 8{ , }, { , }, { }R r r R r r R r= = =  and the profits of 
them 1 2 3  are , respectively. Thus, the total 
requirements requested are 

, ,w w w 30,25,20
1 1 3 4

ˆ { , , }R r r r= , 2 1 2 4 5 6 7 8
ˆ { , , , , , , }R r r r r r r r= , 

3 2 6 8
ˆ { , , }R r r r= . 

According to the definition of NRP, the profit and cost of the 
feasible solution 1  are 30 and 26, 
respectively. Similarly, the profit and cost of 

2  are 45 and 35. Obviously, 2X  is better 
than 1

{(1,1),(2,0),(3,0)}X =

{(1,0),(2,1),(3,1)}X =
X . However,  3  is unfeasible, because 

its cost 51 exceeds the bound . 
{(1,1),(2,1),(3,0)}X =

B

3. THEORETICAL ANALYSIS  
According to the above definitions, we present the computational 
complexity analysis for achieving the backbone of NRP instance 
in this section. Due to the paper length limit, the proofs of Lemma 
1 and Lemma 2 are not given in this paper. 

Lemma 1. Given an NRP instance , if ( , , )NRP S R W iw Z +∈  for 
any i S∈ , then the biased NRP instance  has a 
unique global optimal solution. 

ˆ( , , )NRP S R W

Lemma 2. Given an NRP instance , if iw( , , )NRP S R W Z +∈  for 
any i S∈ , then the unique global optimal solution of the biased 
NRP instance  is also a global optimal solution of 

. 
ˆ( , , )NRP S R W

( , , )NRP S R W

Theorem 1. Unless P NP= , there exists no polynomial time 
algorithm to obtain the backbone of NRP. 

Proof. (Proof by contradiction) We assume that this theorem is 
false. There must exist an algorithm π , which can obtain the 
backbone  of NRP within polynomial time (denoted 
as 

( , , )bone S R W
( )( )O f n , where ( )f n  is a polynomial function of . n

Given any NRP instance , we assume that iw( , , )NRP S R W Z +∈  
for any i S∈ . This assumption is based on the above two lemmas. 
If there is an instance with i , we can obtain a new instance 
with profits 

w Z +∉
'iw Z +∈  by multiplying all the original profits by the 

same number. The solution of the new instance will be the same 
as that of the original one. 

Now we can construct an algorithm to solve  as 
follows. 

( , , )NRP S R W

(a) We construct the biased instance  for 
in  running time; 

ˆ( , , )NRP S R W
( , , )NRP S R W ( )O n

(b) According to the assumption, since  is also an 
instance of NRP, its backbone  can be achieved 
within 

ˆ( , , )NRP S R W
ˆ( , , )bone S R W

( )( )O f n  running time by the algorithm π ; 

(c) By Lemma 1,  is an instance with unique 
global optimal solution. Thus,  is a global optimal 
solution of ; 

ˆ( , , )NRP S R W
ˆ( , , )bone S R W

ˆ( , , )NRP S R W

(d) By Lemma 2, the global optimal solution of  
is also a global optimal solution of . Thus, 

 is also a global optimal solution of . 

ˆ( , , )NRP S R W
( , , )NRP S R W

ˆ( , , )bone S R W ( , , )NRP S R W

Therefore, the global optimal solution of  can be 
obtained within 

( , , )NRP S R W
( )( ) ( )O n O f n+  running time. This contradicts 

with the fact that NRP is NP hard− . Thus, this theorem is proved. 

4. ABMA 
According to the definition of the backbone, if the backbone of an 
NRP instance is obtained, the global optimal solutions can be 
partly constructed and the original instance can be reduced by 
fixing the backbone. However, as shown in Section 3, the 
backbone of NRP cannot be exactly obtained by a polynomial 
time algorithm. In this section, we firstly analyze the relationship 
between global and local optimal solutions by fitness landscape. 
Then, we show the ABMA algorithm for NRP. Finally, we 
present the greedy climbing search operator employed in ABMA. 



4.1 Fitness Landscape Analysis 
We conduct fitness landscape analysis [16] to investigate the 
relationship between global optimal solutions and local optimal 
solutions. For an instance, a global optimal solution is the best 
solution in the whole solution space and a local optimal solution 
is the best one in a specified neighborhood [17]. Usually, a local 
optimal solution can be returned by a local search algorithm 
within polynomial time. In addition, a local search algorithm can 
be called as a local search operator when it is incorporated into 
another algorithm [17].  

In fitness landscape, the distance between a local optimal solution 
and a global optimal solution is defined as the minimal search 
steps from this local optimal solution to the global one by a local 
search algorithm. In practice, this distance is usually defined as 
Hamming distance [16]. The Hamming distance between solution 
X  and a global optimal solution X  is given by ∗

( , )Hd X X n X X∗ ∗= − ∩ . 

Figure 2 shows the fitness landscape of two classic NRP instances, 
nrp-1-0.5 and nrp-4-0.5. The details of the instances can be found 
in Section 5.1. For each sub-figure, the x-axis is the normalized 
Hamming distances (the Hamming distances divided by the scale 
of solutions) from the local optimal solutions to the global one 
and the y-axis is the normalized profits of the local optimal 
solutions (the profits divided by the profit of the global optimal 
solution).  
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Figure 2. Landscape of two NRP instances with two algorithms 
 

Among four sub-figures of Figure 2, we present the fitness 
landscape of instance nrp-1-0.5 in (a) and (b); and we present the 
fitness landscape of instance nrp-4-0.5 in (c) and (d). In (a) and 
(c), the local optimal solutions are obtained by the randomized 
search algorithm, which randomly generates a certain number of 

feasible solutions and picks the best one out of these solutions; in 
(b) and (d), we obtain local optimal solutions by hill climbing 
algorithm [1]. Both algorithms run 1000 rounds and obtain 1000 
local optimal solutions. For comparison, each algorithm in a sub-
figure is respectively conducted with 1000 and 10000 iterations to 
find a local optimal solution. For example, an algorithm with 
1000 iterations can provide local optimal solutions, each of which 
is the best one among 1000 solutions in its neighborhood.  

As the fitness landscape shown in Figure 2, the distances between 
local optimal solutions and global optimal solutions are 0.30-0.60 
times of the instance scale when using a randomized search 
algorithm for instance nrp-1-0.5 in (a); the distances are 0.45-0.60 
times when using a hill climbing algorithm in (b). And for 
instance nrp-4-0.5, the distances are 0.42-0.52 times in (c) and 
0.48-0.53 times in (d). This result indicates that there is a large 
overlap between local optimal solutions and global optimal 
solutions. In addition, for each sub-figure, the local optimal 
solutions with 10000 iterations tend to provide shorter distances 
than those with 1000 iterations. This result shows that a relatively 
strong local search algorithm may improve the local optimal 
solutions both on profits and on the similarity to the global 
optimal solutions.  

4.2 Approximate Backbone and ABMA 
The fitness landscape analysis in Section 4.1 shows that there is 
an overlap between local and global optimal solutions. Thus, we 
can approximate the backbone with the intersection of local 
optimal solutions. Given a set of local optimal solutions 

1 2{ , , , }L L L
L tF X X X= " , the approximate backbone _ ( )La bone F  is 

defined as the intersection of the local optimal solutions in LF , 
i.e., 1 2_ ( ) ...L L L

L ta bone F X X X= ∩ ∩ ∩ . Based on the approximate 
backbone, we design the ABMA algorithm. All the local optimal 
solutions in ABMA are obtained by a specified local search 
operator .   H

Algorithm 1 shows the details of ABMA. The kernel operation of 
ABMA includes two phases: reduction and refinement. Every 
phase consists of multiple levels. A level in a multilevel algorithm 
is one step for reducing the instance scales or refining the 
solutions [20]. In the reduction phase, the algorithm first obtains 
the approximate backbone by the local search operator, then 
reduces the scale of the original instance to generate a new 
instance by fixing the approximate backbone, and solves the new 
instance at last. In the refinement phase, the algorithm combines 
the approximate backbone and the solution of the new instance 
together so as to construct a solution of the original instance. 
ABMA iteratively calls reductions and refinements. The number 
of iterations depends on the scale of the instance after reduction. 
In order to achieve high quality solutions, we also employ the 
multi-restart strategy in ABMA.  

The advantage of ABMA is mainly attributed to its multiple 
reductions for instances. ABMA can dramatically reduce the 
search space of NRP to achieve high quality solutions by fixing 
the approximate backbone. Given an NRP instance with n  
customers, if fixing the approximate backbone with scale , the 
upper limit for the scale of search space will be reduced from 

to 

'n

2n '2n n− . For example, when  and 100n = ' 30n = , the upper 
limit will nearly decrease from  to . Since one reduction 
cannot reduce the large instance (e.g., ) to a very small 
one, ABMA employs the multilevel strategy.  

3010 2110
500n =



 

Algorithm 1: ABMA 
Input:    instance , local search operator ,  

number of randomized restarting 
( , , )NRP S R W H

τ  
Output: solution *X  

* 0=ω ,  0d =
while ( d τ< ) do    //restart 
(1) , //initialize 1 1( , , ) ( , , )NRP S R W NRP S R W= 1k =
(2) while ( kS  is large) do        //reduce the instances 

(2.1) Obtain the set of local optimal solutions kF  by   
for  

H
( , , )k kNRP S R W

(2.2) Generate the approximate backbone _ ( )ka bone F  
(2.3) Reduce the original instance to , where 1 1( , , )k kNRP S R W+ +

1 ( ,1) _ ( )
ˆ\ ( )

kk k i a bone F iR R R+ ∈= ∪ ,  

1 \ { ( ,1) _ ( )  ( ,0) _ ( )}k k k kS S i i a bone F or i a bone F+ = ∈ ∈  
(2.4)  1k k= +

(3) Obtain local optimal solution X  by  for new instance 
        //solve the small instance 

H
( , , )k kNRP S R W

(4) while ( ) do      //refine the solutions  1k >
(4.1) 1_ ( kX X a bone F −= ∪ )

)

     
(4.2)  1k k= −

(5) if( * (Xω ω< ) then *X X= ,  * (X )ω ω= //update solutions 
(6)  1d d= +

 
Figure 3 shows the reduction and refinement phases in ABMA for 
an NRP instance with 5 customers and 8 requirements. For this 
instance, the algorithm employs two-level reductions and 
refinements. In the first level reduction (Figure 3(a)), there are 5 
customers and 8 requirements in the original instance. The local 
search operator obtains a set of 3 local optimal solutions 

1 1 1
1 1 2 3{ , , }F X X X= . Thus, the first level approximate backbone is 

1_ ( ) {(2,1),(3,0)}a bone F = . By fixing the approximate backbone 
1_ ( )a bone F , a new instance with 3 customers and 5 requirements 

is generated after reduction. For the second level reduction 
(Figure 3(b)), a set of 3 local optimal solutions 2 2 2

2 1 2 3{ , , }F X X X=  
is obtained. Thus, the second level approximate backbone is 

2_ ( ) {(5,1)}a bone F = . By fixing 2_ ( )a bone F , a new instance 
with 2 customers and 2 requirements is generated  (Figure 3(c)). 
For the local search operator, this instance is small enough to 
solve and the solution is . At last, under the 
inverted sequence of reduction, the algorithm combines the 
solution 

{(1,1),(4,0)}X =

X  and the two approximate backbones together to 
construct a solution ( ) for the 
original instance (Figure 3(d)).  

{(1,1),(2,1),(3,0),(4,0),(5,1)}X =

4.3 Greedy Climbing Search 
In ABMA, we employ a local search operator to generate local 
optimal solutions for achieving the approximate backbone and 
solving the small instance. Although any local search operator can 
be used in ABMA, a good one can improve the performance of 
the whole algorithm. In this section, we propose a greedy 
climbing search (GCS) operator for ABMA.  

In the literature, the best local search algorithm for NRP is LMSA, 
a simulated annealing algorithm. As an extension to the stochastic 
hill climbing strategy, this algorithm controls the probability of 
accepting solutions by a temperature parameter. LMSA can work 

well on small scale instances of NRP. However, it may take too 
much time for solving large scale instances, due to the large 
search space [1][2]. Therefore, GCS operator is proposed to 
replace LMSA as the operator in ABMA. In contrast to LMSA, 
GCS is also an extension to the stochastic hill climbing strategy. 
GCS tends to choose the customers with high profits so as to 
obtain the good solution quickly from those randomly generated 
solutions. 
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Figure 3. Illustration of ABMA on an instance with 5 
customers and 8 requirements 

Algorithm 2 shows the details of GCS, which consists of a series 
of iterations. In every iteration, if the solution is a feasible one, 
GCS adds a non-selected customer with maximum profit to the 



solution to enlarge the profit. Otherwise, GCS removes a selected 
customer randomly to construct a feasible solution. Since the time 
complexity for computing the cost of a solution is  [1], 
the total time complexity of GCS is , where 

2(O nm )
)2(O nmγ γ  is the 

number of iterations. Therefore, ABMA with GCS operator is still 
a polynomial time algorithm. 
 

Algorithm 2: GCS 
Input:     instance , budget bound ,  

number of iterations 
( , , )NRP S R W B

γ  
Output:  solution *X  
Randomly generated solution X , *X X= ,  1i =
while ( i γ< ) do    //hill climbing and greedy strategy 
(1) if ( ) then  //increase profit for a feasible solution( )cost X B<

(1.1) Add a non-selected customer with the maximum profit,  
( \ {( ,0)}) {( ,1)}X X j j= ∪  

else    //change a non-feasible solution into a feasible one 
(1.2) Remove a selected customer randomly, 

 ( \ {( ,1)}) {( ,0)}X X j j= ∪
(2) if ( ( *) ( )X Xω ω< ) then *X X=      //update the solution 
(3)  1i i= +
 

5. EXPERIMENTAL RESULTS 
For approximate algorithms, it is the common way to evaluate the 
performance of algorithms by experimental methods. In the 
experiments of this paper, the algorithms are implemented with 
C++, compiled under g++, and run on a PC with Intel Core 2.53 
GHz processor and Fedora 6.0 OS (Linux kernel 2.6). 

5.1 NRP Instance Generation 
NRP is a classic problem arising from software requirement 
engineering. Since the requirement information is usually the 
privacy data of software companies, no open large NRP instances 
can be found in the literature. In this paper, we follow the classic 
literature of NRP experiments [1] to generate large NRP instance 
under certain constraints. These instances include 5 groups and 
every group includes 3 instances. In every group, instances have 
distinct budget bounds, i.e., the cost ratio (0.3, 0.5, and 0.7, 
respectively) multiplied by the sum of all costs.  

Table 2 shows the details of constraints and all the values are non-
negative integers. Taken the group of nrp-1 for example, all the 
requirements are classified into 3 levels separated by the symbol 
“/”. A requirement in the 3rd level may depend on some 
requirements in the 2nd level. Similarly, a requirement in the 2nd 
level may depend on those in the 1st level. An instance name is 
formed by the group name and cost ratio. For example, nrp-1-0.3 
is an instance in the group of nrp-1 and the budget bound is 0.3 
multiplied by the sum of all costs. The details of instance nrp-1-
0.3 are as follows. There are 3 levels of requirements, 20, 40, and 
80 requirements in each level. The costs of requirements in the 1st 
level vary between 1~5, those in the 2nd level vary between 2~8, 
and those in the 3rd level vary between 5~10. A requirement in 
the 1st level may rely on at most 8 requirements in the 2nd level. 
Similarly, a requirement in the 2nd level may rely on 2 
requirements in the 3rd level. There are 100 customers, with 
which 1~5 requirements are requested. In addition, every 
customer can provide a profit between 1~50. 

 

5.2 Experimental Results and Analysis 
To evaluate the performance of ABMA, we compare the 
experimental results of LMSA, GCS, and ABMA (with GCS 
operator) on the NRP instances in Table 3. There are 4 columns in 
this table. The first column is the detail of instances and the sub-
columns are instance name, cost ratio, and budget bound, 
respectively. The other three columns are the experimental results 
of those 3 algorithms with 2 or 4 sub-columns. The sub-columns 
“profit” and “time” are the objective function values and time for 
computing in seconds. The sub-column “ratio” shows the ratio 
deviated from this algorithm to LMSA in percents. In more details, 
the ratio of profit is the percents improved on LMSA and the ratio 
of time is the percents increased on LMSA (the negative ratio is 
the percent reduced). 

Since approximate algorithms need input parameters to control 
the process of algorithms, we set the parameters as follows. In 
LMSA (according to [1]), we set round of restarting to , 
number of iterations to  in each round at most, temperature to 
0.01~0.3, and the temperature parameter to . In GCS, we set 
the round of restarting to  and number of iterations to  in 
each round at most. In ABMA, we set the round of restarting to 

, number of iterations to  in each round at most, and 
number of local optimal solutions to 10 for each approximate 
backbone in each reduction phase. Moreover, the reduction stops 
when the scale of the instance after reduction is less than 30% of 
the original one. We run all the algorithms for 10 times and record 
the averages of profits (accurate to integers) and time (accurate to 
2 decimal places).  

210
610

810−

510 310

210 310

Table 3 demonstrates the experimental results of algorithms on 
NRP instances. It can be observed that LMSA achieves good 
performance on small instances and ABMA can work better on 
relatively large instances than the other two algorithms. The 
reason is that LMSA is a kind of simulated annealing algorithm, 
which can provide a good diversity in the search space. Especially 
on the instance nrp-1 with 100 customers and the instance nrp-2-
0.3 with 500 customers, LMSA can obtain much better solutions 
than the other algorithms. Moreover, nrp-2-0.3 is also an easy 
instance for LMSA because the cost ratio decides the complexity 
of instances in the same group. Obviously, the cost ratio 0.3 will 
result in a smaller search space than the cost ratio 0.5. For other 
instances, ABMA can obtain better solutions than LMSA. This 
result can be attributed to the approximate backbone based on the 
similarity of the global and local optimal solutions. Under the 
guideline of the approximate backbone, ABMA reduces the scale 
of instances iteratively. Thus, ABMA tends to search the good 
local optimal solutions which are similar to global ones.  

Each of GCS and LMSA cannot beat the other one in the 
comparison of running time while the time of both these 
algorithms depends on the number of iterations. ABMA takes less 
time than LMSA owing to the quick convergence in the search 
space by GCS operator. In addition, on the instances nrp-2-0.5 
and nrp-4-0.3, ABMA takes much more time than LMSA. This 
result is caused by the number of iterations for obtaining the 
approximate backbone. When the instances are complex and the 
approximate backbones are hard to achieve, ABMA will run for 
numerous iterations. It will result in the sharp increase of running 
time. 

 



 

Table 2. Generation rules of NRP instances 

 nrp-1 nrp-2 nrp-3 nrp-4 nrp-5 
# of requirements per level 20/40/80 20/40/80/160/320 250/500/750 250/500/750/1000/750 500/500/500

cost of requirement 1~5/2~8/5~10 1~5/2~7/3~9/4~10/5~15 1~5/2~8/5~10 1~5/2~7/3~9/4~10/5~15 1~3/2/3~5 
# of dependent requirements 8/2/0 8/6/4/2/0 8/2/0 8/6/4/2/0 4/4/0 

# of customers 100 500 500 750 1000 
# of requests of customer 1~5 1~5 1~5 1~5 1 

profit of customer 1~50 1~50 1~50 1~50 1~50 

 
Table 3. Performance: LMSA, GCS, and ABMA 

instance  LMSA GCS ABMA 
name ratio bound  profit time(s) profit ratio% time(s) ratio% profit ratio% time(s) ratio%

nrp-1-0.3 0.3 252  958 162.77 742 -22.55 148.14 -8.99 814 -15.03 27.16 -83.32
nrp-1-0.5 0.5 421  1501 203.91 1240 -17.39 178.77 -12.33 1485 -1.07 23.80 -88.33
nrp-1-0.7 0.7 589  2121 230.61 1874 -11.65 222.33 -3.59 2049 -3.39 11.77 -94.90
nrp-2-0.3 0.3 1517  3122 688.30 2263 -27.51 691.19 0.42 2336 -25.18 217.39 -68.42
nrp-2-0.5 0.5 2529  5781 978.23 4432 -23.34 882.88 -9.75 6117 5.81 2319.78 137.14
nrp-2-0.7 0.7 3540  7622 1164.53 7642 0.26 1095.30 -5.94 7742 1.57 114.92 -90.13
nrp-3-0.3 0.3 2613  4820 1320.06 4886 1.37 1374.09 4.09 4926 2.20 737.05 -44.17
nrp-3-0.5 0.5 4355  8213 1704.30 9075 10.50 1828.16 7.27 9890 20.42 3051.45 79.04
nrp-3-0.7 0.7 6096  12032 1788.89 12455 3.52 1941.08 8.51 12437 3.37 257.64 -85.60
nrp-4-0.3 0.3 6684  6059 2548.45 6685 10.33 2680.81 5.19 7342 21.18 11641.50 356.81
nrp-4-0.5 0.5 11141  11688 3305.41 12721 8.84 3459.66 4.67 13040 11.57 2964.31 -10.32
nrp-4-0.7 0.7 15597  17701 3549.41 17954 1.43 3816.08 7.51 17970 1.52 1059.64 -70.15
nrp-5-0.3 0.3 1186  11710 2008.84 8277 -29.32 1843.31 -8.24 8255 -29.50 1285.05 -36.03
nrp-5-0.5 0.5 1976  16495 2420.56 16145 -2.12 2445.09 1.01 16673 1.08 953.89 -60.59
nrp-5-0.7 0.7 2766  24440 2430.76 24262 -0.73 2789.83 14.77 24550 0.45 344.73 -85.82

 
As mentioned above, the scales of search spaces depend on the 
cost ratio of instances in the same group. The results of LMSA 
and GCS show that the running time of these two algorithms 
increase along with the cost ratio growth. On the contrary, there is 
no such feature on the results of ABMA. Since it is affected by the 
instance characteristic, the running time of ABMA varies against 
the complexity of instances.  

6. CONCLUSIONS AND FUTURE WORK 
As an important problem in requirement engineering, NRP tries to 
balance the profits of customers and the costs for development. In 
this paper, we analyze the computational complexity for obtaining 
the backbone of NRP. We show that there exists no polynomial 
time algorithm to obtain the backbone of NRP instance under the 
assumption that ≠P NP . After the analysis of the relationship 
between local optimal solutions and global optimal solutions, we 
design ABMA to solve NRP by reducing large instances into 
smaller ones. Experimental results demonstrate that ABMA 
achieves good performance on the large NRP instances. 

For NRP, our future work will focus on the estimation of the scale 
of the approximation backbone and some other approaches for 
obtaining the approximate backbone. First, the fitness landscape 
analysis shows that the scale of backbones relies on the instances 

and local search algorithms. However, the scale of approximate 
backbones is obtained by experiments. A further work is to 
explore the estimation for the scale of approximate backbones by 
theoretical analysis. Second, the backbone of NRP instances is 
constructed based on the intersection of solutions. Since the 
backbone can express some characteristics of problems, it is 
valuable to design better models to extract the backbone for 
algorithm design. We expect to obtain approximate backbones 
with a probability based model to add more customers to the 
backbone. This model may improve the diversity of solutions for 
NRP.  

The idea in solving NRP can also be applied to other problems 
arising from the real-world applications in software engineering. 
We expect that the backbone based algorithms can be helpful to 
some other problems. Moreover, to date, there is no open instance 
library for NRP. We also want to collect several problem 
instances as an open library in our future work.   
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