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Abstract—Automated test generation can reduce the manual
effort to improve software quality. A test generation method
employs code coverage, such as the widely-used branch coverage,
to guide the inference of test cases. These test cases can be used
to detect hidden faults. An automatic tool takes a specific type of
code coverage as a configurable parameter. Given an automated
tool of test generation, a fault may be detected by one type of code
coverage, but omitted by another. In frequently released software
projects, the time budget of testing is limited. Configuring code
coverage for a testing tool can effectively improve the quality
of projects. In this paper, we conduct a preliminary study on
whether a fault can be detected by specific code coverage in
automated test generation. We build predictive models with 60
metrics of faulty source code to identify detectable faults under
eight types of code coverage, such as branch coverage. In the
experiment, an off-the-shelf tool, EvoSuite is used to generate
test data. Experimental results show that different types of code
coverage result in the detection of different faults. The extracted
metrics of faulty source code can be used to predict whether a
fault can be detected with the given code coverage; all studied
code coverage can increase the number of detected faults that
are missed by the widely-used branch coverage. This study can
be viewed as a preliminary result to support the configuration of
code coverage in the application of automated test generation.

Index Terms—test generation, code metrics, code coverage,
predictive models

I. INTRODUCTION

Automated test generation aims at automatically creating
test cases to cover program paths and detect faults. Exist-
ing studies have widely investigated the techniques of test
generation. For instance, Randoop by Pacheco et al. [24] is
designed as a random testing method driven by feedback. Java
PathFinder by Anand et al. [3] employs symbolic execution
to infer test cases; EvoSuite by Fraser and Arcuri [7] uses
evolutionary computation to evolve test cases to explore pro-
gram paths. Applying automated test generation can improve
the coverage of source code and reduce the cost of manually
writing tests by developers.

Code coverage, such as branch coverage, method coverage,
and mutation coverage, is a type of measurements in both
manual and automated test generation. We refer to a mea-
surement of code coverage as a coverage measurement. The
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code coverage is the ratio of executed code by running tests
in all code under testing. Branch coverage, a widely-used
code coverage, is the ratio of executed branches among all
branches in source code. Tests with high code coverage are
considered as “adequate” tests since empirical results show
code coverage correlates with the ability of fault detection [6],
[10], [15]. However, in automated test generation, different
coverage measurements lead to inconsistent results of fault
detection. Our experiment on test generation by EvoSuite (in
Section IV-B) shows that in a time budget of 10 minutes per
fault, tests based on weak mutation coverage can detect 41
faults, which are not be detected by tests based on branch
coverage; meanwhile generated tests based on branch coverage
can detect 54 faults that cannot be detected by generated tests
based on weak mutation coverage.

For an automatic tool of test generation, a tester can config-
ure a specific coverage measurement as a parameter, such as
branch coverage or method coverage, to guide or evaluate the
process of test generation. For example, in the tool EvoSuite,
configuring coverage measurements results in the generation of
different tests and the detection of different faults. In a limited
time budget, generating tests for all coverage measurements is
impractical. Instead, a tester can manually configure one or
more particular coverage measurements for test generation. In
automated test generation, could we identify whether potential
faults can be detected for one coverage measurement? If
the answer is positive, we can guide developers to schedule
programs under testing to maximize the number of detected
faults.

Existing studies on debugging have identified the effec-
tiveness of automated techniques. Le et al. [19] proposed a
predictive method to predict whether automated fault local-
ization tools can obtain accurate results on particular faults;
another work proposed by the same group [20] learned
to identify whether automated program repair can generate
correct patches. Motivated by the existing work [19], [20],
we explore whether a fault can be detected by automated
test generation based on different coverage measurements. A
tester can leverage our results to choose a specific coverage
measurement to increase the probability of fault detection or
to schedule the test execution in a limited time budget.



In this paper, we conducted a preliminary study on the
analysis of detectable faults by automated test generation.
We investigated 742 real-world faulty files as well as their
testing results on eight coverage measurements by an off-
the-shelf test generation tool, EvoSuite. We aimed to answer
three Research Questions (RQs), including the prediction of
detectable faults for one coverage measurement, the difference
between coverage measurements, and the metric correlation. In
RQ1, we found that the classifier RandomForest with SMOTE
is effective in building a predictive model of detected faults
based on metrics of faulty source code. In RQ2, we found that
the branch coverage can detect most faults among all coverage
measurements under evaluation; the weak mutation coverage
and the direct branch coverage can be used as the supplement
to increase the number of detected faults. In RQ3, we analyzed
which metric correlates with newly detected faults: six metrics,
such as the number of public methods and the number of
descendants, appear in top-5 of correlation in two groups of
experiments. This study can be viewed as a preliminary result
to support the identification of detectable faults with automated
techniques.

This paper makes the following major contributions:
• We conducted a study on the fault detection for eight cov-

erage measurements to assist the users to use automatic
tools of test generation.

• We empirically studied the ability of fault detection by
automated test generation on 742 faulty files via an
automatic tool, EvoSuite.

• We designed predictive models based on 60 code metrics
to learn whether a fault can be detected; we showed that
the classifier of Random Forest with SMOTE is effective
in the prediction.

The rest of this paper is organized as follows. Section II
shows the background of this study. Section III presents the
study setup, including three research questions and the data
preparation. Section IV shows the results of our preliminary
study. Section V presents the threats to the validity. Section VI
lists the related work of the study and Section VII concludes
this paper.

II. BACKGROUND AND MOTIVATION

Our work aims to empirically identify whether potential
faults can be detected by automated test generation. In this
section, we present the background and the motivation of this
work.

A. Background

In white-box testing, developers write tests to detect poten-
tial faults. A test is a piece of source code, which is formed
as a test method in modern testing framework, such as JUnit.
To detect faults, a developer reads the requirements of the
program and then writes several tests. The requirements can
be identified as test oracle, which validates the correctness of
source code under testing [26]. The written tests are expected
to be consistent with the test oracle. To trigger a fault, the
source code has to be executed. Therefore, code coverage, such

as branch coverage, is considered as a measurement to quantify
the degree of adequate testing; a coverage measurement is
also called a test adequacy criterion [31]. Branch coverage
is widely-used in practice [4], [22]. To avoid any potential
ambiguity, we define fault detection as follows. We execute
a test case on a program under test. If the test execution is
interrupted, including a crash or an assertion violation, we call
a fault in the program is detected [29].

To reduce the manual effort of writing tests, automated
techniques of test generation are proposed. Similar to writ-
ing tests by human developers, automated test generation is
designed to produce tests to satisfy code coverage. However,
it is difficult to directly automate the process of reading
requirements. Thus, automated test generation cannot rely
on software requirements that human developers can directly
understand [29].

In automated test generation, a coverage measurement
serves as both a measurement of evaluating automatically
generated tests and a fitness function to guide the process of
test generation [3], [7]. The choice of coverage measurements
is a parameter in a tool of automated test generation. A
user of such a tool can manually decide the configuration
of coverage measurements. Ideally, automated techniques may
exhaustively test all source code, but it may require an unac-
ceptable time cost. In a limited time budget, tests generated by
automated test generation techniques cannot cover all source
code [10].

EvoSuite, a search-based tool, is widely-studied in auto-
mated test generation [1], [7]–[10], [15]. EvoSuite encodes a
test into a chromosome of statements and employs a genetic
algorithm to search for the optimal chromosome; EvoSuite
iteratively generates a set of chromosomes with the guide of
a fitness function, i.e., a coverage measurement. The chro-
mosome with the best value of the fitness function is finally
converted back to a generated test. In generated tests, EvoSuite
embeds several types of assertions to check the program states,
e.g., assertions of equal values, not null objects, and unchanged
states. In the implementation of EvoSuite, many coverage
measurements can be deployed, including branch coverage,
line coverage, and weak mutation coverage.

B. Motivation

Different coverage measurements lead to various results of
fault detection [16], [25]. Given the same running time, a fault
may be detected with a coverage measurement, e.g., method
coverage, but may be not detected with another coverage
measurement, e.g., branch coverage.

Motivated by the above fact, in this study, we present the
ability of fault detection with different coverage measurements
via automated test generation and we present the feasibility of
identifying whether automatically generated tests can detect
a hidden fault with one coverage measurement. A user of
an automatic tool of test generation can follow our study
to choose a specific coverage measurement to enlarge the
probability of fault detection. Meanwhile, if the time cost of
testing is limited, a developer can choose to run automated



TABLE I
LIST OF METRICS OF SOURCE CODE

Category Metric
Clone Clone coverage, clone classes, clone complexity, clone instances, clone line coverage, clone logical

line coverage, lines of duplicated code, logical lines of duplicated code
Cohesion Lack of cohesion in methods
Complexity Nesting level, nesting level else-if, weighted methods per class
Coupling Coupling between object classes, coupling between object classes inverse, number of incoming

invocations, number of outgoing invocations, response set for class
Documentation API documentation, comment density, comment lines of code, documentation lines of code, public

documented API, public undocumented API, total comment density, total comment lines of code
Inheritance Depth of inheritance tree; number of ancestors, children, descendants, and parents
Size Direct number(†) and total number(†) of attributes, getters, lines of code, logical lines of code,

respectively;
direct number(†) and total number(†) of local attributes(‡), local getters, local methods, local
public attributes, local public methods, local setters, methods, statements, public attributes, public
methods, and setters, respectively

† Direct number and total number denote counting the number without and with inherited attributes from ancestors classes, respectively.
‡ Local denotes the number that are defined inside nested, anonymous, and local classes.

test generation on a fault with the high likelihood of being
detected. Based on this study, developers can also understand
the factors that relate to the detected faults or try multiple
times of test generation with different coverage measurements
in limited time. We expect to provide a preliminary result to
support the choice of coverage measurements in automated
test generation.

III. STUDY SETUP

In this section, we describe the research questions and the
data preparation in the study.

A. Research Questions

We conducted a preliminary study on whether a fault can be
detected by automated test generation. This study is designed
to understand detectable faults based on test generation and to
answer three Research Questions (RQs).

RQ1. Can we predict whether a fault is detectable
with specific code coverage? We investigate the potential of
predicting detectable faults. Since multiple coverage measure-
ments may lead to the detection of different faults. In RQ1,
we focus on the prediction based on each specific coverage
measurement. We are to build a classifier to identify detectable
faults by automated test generation.

RQ2. How many faults can be newly detected by other
coverage rather than branch coverage? Branch coverage is
considered as a widely-used coverage in practice [8], [10].
If a fault cannot be detected by branch coverage but can
be detected by another coverage, we refer to this fault as
a newly detected fault. In RQ2, we study the difference of
detected faults between branch coverage and other coverage.
We explore whether other coverage measurements can reveal
faults that cannot be detected with branch coverage.

RQ3. Which metric correlates with newly detected faults
that are detected by other coverage rather than branch
coverage? We investigate the factors related to newly detected

faults that are not detected with branch coverage. In RQ3, we
check the code metrics that correlate with the newly detected
faults.

Relationship among three RQs. Our study focuses on
the possibility of identifying whether a fault can be detected
by automated test generation. In RQ1, we directly answer
the effectiveness of identifying detectable faults via building
a predictive model. RQ1 can be viewed as a simple result
and empirical evidence for this study. In RQ2, we distinguish
the impact of different coverage measurements on the fault
detectability. For example, the branch coverage is widely-used
for fault detection. We observe the newly detected faults by the
other coverage rather than the branch coverage. In RQ3, we
check the correlation between the newly detected faults and
the metric of source code. RQ3 further answers the impact on
the newly detected faults.

B. Data Preparation

To understand the fault detection by test generation, our
study needs labeled data of test execution. In our study, we
chose EvoSuite as the tool of test generation since it is easy
to be used and deployed [7].

We implemented the experiment via Java JDK 1.7 on the
top of a machine-learning framework Weka1.

742 faulty classes under evaluation. Salahirad et al. [25]
have executed EvoSuite on 742 real-world Java faulty files and
collected the detailed testing results. These faults are extracted
from 15 open-source projects, including Apache Commons
Codec, CLI, CSV, JXPath, Lang, Math, JFreeChart, Guava,
JacksonCore, JacksonDatabind, JacksonXML, Jsoup, Google
Closure, Joda-Time, and Mockito. In our study, we followed
their work to use all faulty files. One fault may contain faulty
code in two or more Java classes. Thus, we treated each faulty
class as one instance in our study since EvoSuite can specify

1Weka, http://www.cs.waikato.ac.nz/ml/weka/.
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TABLE II
PRECISION (P), RECALL (R), F-MEASURE (F), AND AUC OF PREDICTING DETECTED FAULTS FOR 2-MINUTE EXPERIMENTS

Coverage # Faults BayesNet + SMOTE SVM + SMOTE RandomForest + SMOTE RandomForest
Detected Undetected P R F AUC P R F AUC P R F AUC P R F AUC

Branch 289 453 0.724 0.711 0.717 0.761 0.578 0.969 0.724 0.533 0.769 0.843 0.804 0.837 0.582 0.526 0.553 0.717
Direct branch 264 478 0.667 0.754 0.708 0.741 0.545 0.960 0.695 0.537 0.763 0.822 0.791 0.831 0.580 0.496 0.535 0.735

Line 115 627 0.457 0.487 0.472 0.707 0.667 0.035 0.066 0.514 0.682 0.448 0.541 0.820 0.318 0.122 0.176 0.650
Exception 251 491 0.664 0.709 0.686 0.764 0.536 0.960 0.688 0.554 0.752 0.805 0.778 0.844 0.571 0.482 0.523 0.731
Method 132 610 0.447 0.655 0.531 0.727 0.385 0.019 0.036 0.503 0.683 0.572 0.623 0.840 0.390 0.242 0.299 0.705

Method w/o exception 140 602 0.490 0.625 0.549 0.751 0.250 0.007 0.014 0.499 0.689 0.554 0.614 0.835 0.400 0.200 0.267 0.690
Output 159 583 0.543 0.752 0.631 0.779 0.556 0.031 0.060 0.509 0.740 0.616 0.672 0.854 0.424 0.226 0.295 0.711

Weak mutation 259 483 0.683 0.687 0.685 0.747 0.536 0.952 0.686 0.535 0.756 0.797 0.776 0.820 0.560 0.413 0.476 0.702

TABLE III
PRECISION (P), RECALL (R), F-MEASURE (F), AND AUC OF PREDICTING DETECTED FAULTS FOR 10-MINUTE EXPERIMENTS

Coverage # Faults BayesNet + SMOTE SVM + SMOTE RandomForest + SMOTE RandomForest
Detected Undetected P R F AUC P R F AUC P R F AUC P R F AUC

Branch 294 448 0.715 0.733 0.724 0.761 0.586 0.978 0.733 0.536 0.746 0.847 0.793 0.814 0.588 0.568 0.578 0.706
Direct branch 290 452 0.728 0.719 0.723 0.764 0.578 0.978 0.726 0.531 0.748 0.828 0.786 0.816 0.563 0.510 0.535 0.693

Line 99 643 0.544 0.409 0.467 0.731 0.000 0.000 0.000 0.498 0.603 0.399 0.480 0.803 0.342 0.131 0.190 0.603
Exception 272 470 0.682 0.699 0.690 0.743 0.555 0.965 0.705 0.535 0.752 0.825 0.787 0.819 0.549 0.478 0.511 0.697
Method 136 606 0.493 0.665 0.567 0.751 0.500 0.026 0.049 0.507 0.711 0.596 0.648 0.847 0.493 0.250 0.332 0.732

Method w/o exception 137 605 0.477 0.609 0.535 0.734 0.500 0.022 0.042 0.506 0.720 0.591 0.649 0.850 0.463 0.226 0.304 0.718
Output 166 576 0.548 0.702 0.616 0.771 0.353 0.018 0.034 0.499 0.711 0.593 0.647 0.829 0.457 0.259 0.331 0.709

Weak mutation 281 461 0.689 0.694 0.691 0.745 0.562 0.956 0.708 0.524 0.753 0.813 0.782 0.814 0.554 0.495 0.523 0.707

one class under testing as input. Thus, we obtained 742 faulty
files (also faulty classes in Java), each of which is referred to
as a fault for short.

2 groups of experiments. Salahirad et al. [25] have used
two groups of setup: the time budget two minutes and ten
minutes per class in test generation. We followed their setup
and did not adding other time budgets since the cost of data
collection is huge. And the time budget between two and ten
minutes can increase the confidence of the data analysis in our
study.

60 code metrics of class under test. In our study, each
faulty class is converted into a vector of 60 code metrics. We
used the collected data by Salahirad et al. [25] and followed
their definition of code metrics. Table I briefly lists the code
metrics of each fault class in our study.

8 coverage measurements. We listed eight coverage mea-
surements in the study as follows: Branch coverage is the ratio
of executed control-flow branches by tests. Direct branch cov-
erage also considers branches, but only focuses on branches
inside the method under testing. Line coverage, exception
coverage, and method coverage are the ratio of executed lines
of source code, trigged exceptions, and executed methods by
tests, respectively. Method without exception coverage (method
w/o exception for short) is similar to the method coverage, but
does not consider any test that throws an exception. Output
coverage is the ratio of mapped returned values to abstract
values [2]. Weak mutation coverage is the ratio of killed
mutants by tests, where a mutant is a slightly changed version
of current source code [23].

Data collection. The test data is collected with EvoSuite.
For each fault, EvoSuite is run to generate tests with one
coverage measurement in a time budget, i.e., two minutes or
ten minutes. In each run of EvoSuite, tests and code coverage
are collected as the dataset.

IV. EXPLORATORY STUDY

We conducted a preliminary study on understanding de-
tectable faults by automated test generation with eight cover-
age measurements. The three RQs are investigated as follows.

A. RQ1. Can we predict whether a fault is detectable with
specific code coverage?

Given specific code coverage such as branch coverage, can
we predict whether a fault can be detected by automated
test generation? We viewed each fault as a vector of 60
code metrics and labeled the faults as detected or undetected
according to the data of actual test execution (in Section III-B).
Therefore, for one coverage measurement, we build a classifier
to predict whether a fault can be detected or not. In this
research question, we characterized each fault as a vector of
code metrics. We note that 60 code metrics may not fully show
the characteristics of a faulty program. However, extracting
these metrics can partially show differences among faults.

In the study, we used three typical classifiers in the eval-
uation: BayesNet (a network classifier of multiple Bayesian
nodes), SVM (an algorithm of Support Vector Machine with
the kernel of radial basis functions), and RandomForest (an
ensemble classifier of multiple decision trees). These three
classifiers are combined with SMOTE. SMOTE is a method of



imbalanced data processing since the experimental data show
the risk of data imbalance [5]. We evaluated the prediction
results with 5-fold cross validation and showed the average.
We measured the evaluation of predicting detected faults with
four typical ways: precision, recall, F-measure, and AUC. A
higher value shows the better effectiveness of the prediction.

Table II and Table III show the evaluation with eight cov-
erage measurements in two groups of experiments: the cutoff
time of test generation for each faulty file is set to two minutes
and ten minutes, respectively. As shown in Table II, in the
group of 2-minute experiments, the number of detected faults
by test generation is fewer than the number of undetected
faults; Specifically, the ratio of detected faults within 2-minute
test generation ranges 15.5% to 38.9%. This provides an
application scenario of imbalanced data processing, which
indicates that combining SMOTE can improve the prediction
result. Among the algorithms under evaluation, RandomForest
with SMOTE achieved the best result than other algorithms:
all coverage measurements (i.e., rows in Table II) reach the
F-measure over 0.50 and four out of eight values of F-measure
are over 0.77; all the AUC values are over 0.82. This result
shows that the RandomForest with SMOTE can be used to
predict whether a fault can be detected by test generation
although the ratio of detected faults is from 15% to 40%.
Meanwhile, besides RandomForest with SMOTE, BayesNet
with SMOTE also performs well. Results of RandomForest
with or without SMOTE show that the SMOTE method is
effective in improving the imbalanced data.

The 10-minute experiments in Table III show similar results
to the 2-minute experiments. RandomForest with SMOTE is
the best method in predicting whether a fault can be detected.
Seven out of eight values of F-measure are over 0.64; an
exceptional value is 0.48 for the line coverage. The reason for
this F-measure less than 0.50 is that the number of detected
faults with the line coverage is 99, which leads to the ratio
of detected faults to 13%. Note that for the line coverage,
the number of detected faults in 10-minute experiments is
lower than in 2-minute experiments. The major reason is
that EvoSuite has an optimization mechanism that can reduce
the number of assertions based on coverage to save the
cost of running tests. Although 10-minute experiments can
generate more assertions than 2-minute experiments, particular
assertions that can detect faults may be reduced since the
optimization in EvoSuite cannot identify which assertion can
actually detect faults. From results in Table II and Table III,
RandomForest with SMOTE can obtain the best prediction
results among algorithms under evaluation. Most F-measure
values are over 0.60; the AUC values are stable and over 0.80.

Discussion. In RQ1, the evaluation is conducted on two
groups of time budgets of test generation, including two
minutes or ten minutes per coverage measurement. Comparing
to existing work in the prediction in software engineering, such
as defect prediction [14], [30], [32], the size of datasets is not
large. In our study, collecting the data of test execution is time-
consuming. The collection relies on the local deployment of
each faulty program [12]. We plan to conduct a study on a

Fig. 1. Number of newly detected and not detected faults by seven other cov-
erage measurements for 2-minute experiments, compared to branch coverage.

larger dataset or more groups of time budgets in the future.

Finding 1. Given a coverage measurement, we can build
classifiers to predict whether a fault can be detected by
automated test generation. The F-measure and the AUC
values show that RandomForest with SMOTE is effective in
the prediction.

B. RQ2. How many faults can be newly detected by other
coverage rather than branch coverage?

Branch coverage is considered as an effective coverage
measurement, which is widely-used to measure both manual
and automated test generation [1], [8], [15]. In Section IV-A,
results in Table II and Table III show that the branch coverage
can detect the most number of faults among eight coverage
measurements in the study. This motivates us to investigate
whether other coverage can detect a fault that is undetected
by the branch coverage.

We focus on two differences between other coverage and
branch coverage: for faults that cannot be detected by branch
coverage, how many faults can be newly detected by other
coverage? for faults that can be detected by branch coverage,
how many faults are not detected by other coverage? We
leverage this RQ to understand detectable faults with different
coverage measurements.

Fig. 1 shows the number of newly detected and not detected
faults by seven other coverage measurements for 2-minute
experiments, compared with the branch coverage. For newly
detected faults that the branch coverage cannot detect, the
weak mutation coverage can newly detect 26 faults and the
direct branch coverage can newly detect 22 faults; the method
coverage, the method w/o exception coverage, and the output
coverage can newly detect 2, 7, and 9 faults, respectively. This
result shows that if the time budget of test generation allows
using two or more coverage measurements, the weak mutation



Fig. 2. Number of newly detected and not detected faults by seven other
coverage measurements for 10-minute experiments, compared to branch
coverage.

coverage and the direct branch coverage should be the choices
while using method coverage as supplement may be not useful.

Among all detected faults by the branch coverage, the line
coverage fails in detecting 191 faults; the method coverage
and the method w/o exception coverage fail in detecting 159
and 156 faults, respectively. The direct branch coverage, the
exception coverage, and the weak mutation coverage cannot
detect 47, 54, and 56 faults, respectively, compared with the
branch coverage. The result of not detected faults shows that if
the line coverage is used, other coverage like branch coverage
should be used as the supplement.

Fig. 2 shows the number of newly detected and not detected
faults in 10-minute experiments. For newly detected faults that
the branch coverage cannot detect, the weak mutation coverage
can newly detect 41 faults and the direct branch coverage
can newly detect 32 faults. The number of newly detected
faults in 10-minute experiments are higher than that in 2-
minute experiments. Among all detected faults by the branch
coverage, the line coverage fails in detecting 214 faults. The
number of undetected faults is also higher than that in 2-minute
experiments.

Discussion. In RQ2, we show that a fault may be not
detected by the widely-used branch coverage, but can be
detected by another coverage, such as exception coverage. In
practice of using automated test generation, a user can add
several code coverage to the automatic tool to enhance the
ability of fault detection via branch coverage. In this study, we
did not show the correlation between the code coverage and a
defect class, i.e., the type of a fault. A study on defect classes
may help understand the role of coverage measurements in
automated test generation.

Finding 2. Among all code coverage under evaluation,
the branch coverage can detect the most faults. The weak
mutation coverage and the direct branch coverage can be used
as the supplement of the branch coverage and can increase
newly detected faults.

C. RQ3. Which metric correlates with newly detected faults
that are detected by other coverage rather than branch cov-
erage?

In RQ2 (in Section IV-B), we showed that seven coverage
measurements can be used to detect faults that are missed by
the branch coverage; in RQ1 (Section IV-A), we showed that
each faulty file is viewed as a vector of 60 metrics. Therefore,
we plan to explore which metric correlates with the newly
detected faults.

To understand the correlation, we labeled each fault with a
Boolean flag, which denotes whether the fault can be newly
detected by another code coverage rather than the branch
coverage. We used Point-biserial correlation coefficient to
measure the correlation between each metric and the flag of
new fault detection. We chose Point-biserial correlation coef-
ficient rather than other coefficients like Pearson correlation
coefficient since the flag of new fault detection is a Boolean
value. The Point-biserial correlation coefficient is between −1
to 1; a high absolute value indicates that the metric and the
flag are highly correlative.

Given a dataset D that contains n elements, let X and Y be
a continuous variable and a Boolean variable of each element.
The set D is divided into two subsets Dt and Df , where Y
is true for all elements in Dt and Y is false for all elements
in Df . The Point-biserial correlation coefficient of the set D
is defined as follows,

rpb =
mt −mf

s

√
nt − nf

nt + nf

where s is the standard deviation of X values in D, mt and
mf are the mean values of X in Dt and Df and nt and nf

are the numbers of elements in Dt and Df , respectively.
For each code coverage (except the branch coverage), we

calculated Point-biserial correlation coefficient between each
of 60 metrics and the flag of new fault detection. We sorted
all correlation coefficients in a descending order of the ab-
solute values and prioritized the correlation coefficients with
statistical significance. Table IV presents the names of top-
5 metrics for each code coverage. For instance, the first row
in the table shows that the direct branch coverage can newly
detect faults compared with the branch coverage and the top-5
metrics with the highest correlation are clone line coverage,
clone coverage, clone logical line coverage, lines of duplicated
code, and logical lines of duplicated code.

Table IV contains two groups of experiments: 2 minutes per
fault and 10 minutes per fault of test generation. In each group,
we marked metrics that appear for two and more times with
the light-gray. We observed that, in the 2-minute experiments,
7 metrics appear two or more times, including clone line



TABLE IV
TOP-5 METRICS WITH THE STRONGEST CORRELATION WITH NEWLY DETECTED FAULTS BASED ON POINT-BISERIAL CORRELATION COEFFICIENT. A

LIGHT-GRAY CELL SHOWS THAT THE METRIC APPEARS TWICE OR MORE AMONG SEVEN MEASUREMENTS OF CODE COVERAGE.

Coverage Top-5 correlated metrics
The 1st metric The 2nd metric The 3rd metric The 4th metric The 5th metric

Group of 2-minute experiments
Direct branch Clone line coverage* Clone coverage* Clone logical line coverage* Lines of duplicated code Logical lines of duplicated code

Line Clone line coverage Clone coverage Clone logical line coverage Number of public methods Number of methods
Exception Lack of cohesion in methods* Number of descendants Number of local getters Number of outgoing invocations Number of incoming invocations
Method Total number of setters* Total number of methods* Number of local attributes* Total number of local setters* Number of local setters*

Method w/o exception Number of descendants* Total number of setters* Total number of methods* Number of local public attributes Number of local setters
Output Number of descendants Clone coverage Clone logical line coverage Clone line coverage Coupling between object classes

Weak mutation Number of descendants* Clone coverage* Clone line coverage* Clone logical line coverage* Number of children*

Group of 10-minute experiments
Direct branch Documentation lines of code* Public documented API* Number of local public methods* Comment lines of code Total comment lines of code

Line Number of attributes Number of descendants Number of public methods Total comment lines of code Number of local public methods
Exception Number of public attributes* Total number of public attributes Nesting level else-if Number of attributes Total number of local attributes
Method Number of getters* Total number of getters* Number of local getters* Total number of setters* Total number of methods*

Method w/o exception Number of getters* Number of local getters* Total number of getters* Total number of methods* Number of methods*
Output Number of getters* Number of public methods* Number of local getters* Total comment lines of code* Documentation lines of code*

Weak mutation Total number of public attributes* Number of public attributes* Nesting level else-if* Number of getters Number of attributes

* denotes the correlation coefficient is statistically significant (p-value< 0.05).

coverage, clone coverage, etc. In the 10-minute experiments,
13 metrics appear two or more times, including documentation
lines of code, nesting level else-if, etc. The intersection of
metrics in two groups consists of six metrics: the number
of public methods, the number of methods, the number of
descendants, the number of local getters, the total number
of setters, and the total number of methods. This observation
shows that these metrics play an important role in identifying
newly detected faults by other coverage measurements rather
than the branch coverage.

Discussion. The correlation coefficient in this study is
calculated with Point-biserial correlation coefficient. Other
analysis that involves the correlation between metrics, such
as ANOVA [14], can lead to accurate analytical results in the
correlation coefficient.

Finding 3. We analyzed which metric correlates with newly
detected faults with seven other coverage measurements,
compared with the branch coverage. Six metrics, such as
the number of public methods and the number of descen-
dants, appear in the top-5 correlation in both two groups of
experiments.

V. THREATS TO VALIDITY

We present threats to the validity of our study in three
categories.

Threats to construct validity. Our study used the dataset
by Salahirad et al. [25] to study the ability of fault detection
by automated test generation with different coverage measure-
ments. Collecting data of test execution is time-consuming.
This dataset contains the test results with eight coverage
measurements in two groups. One group is set to two minutes
per fault and the other is set to ten minutes per fault. There
exists a threat that data of diverse time costs may lead to
different experimental results. In Section IV-B, we answered
RQ2 via showing newly detected faults and missed faults

between different coverage measurements. The reason for this
difference has not been explored. A study with manual analysis
can provide further details. In the study, we only use one
tool of test generation, i.e., EvoSuite. This adds a threat to
the generality of the result. A study on other tools of test
generation can be conducted to check the generality.

Threats to internal validity. In Section IV-A, we conducted
a predictive model for the detection of each fault. The number
of instances in the dataset may be not enough for building a
stable predictive model. In the evaluation, we used available
data of our dataset of eight coverage measurements. A large
scale evaluation could be explain the benefit of predicting the
fault detection.

Threats to external validity. The generality is a threat
to applying the empirical results and findings of our study.
Our dataset contains 742 faulty files of Java programs. We do
not claim that this preliminary study on detectable faults can
be generalized to other projects, other test scenarios, or other
automated tools of test generation. Considering the number of
test generation in daily development, a study on a diversified
dataset can help to understand the detected faults by various
coverage measurements.

VI. RELATED WORK

Automated test generation has been widely-studied and
many automated tools are proposed, including Randoop by
Pacheco et al. [24], Java PathFinder by Anand et al. [3], and
EvoSuite by Fraser and Arcuri [7]. Among existing tools of
test generation, EvoSuite is used to detect faults or generate
specific tests due to its high usability. Fraser and Arcuri [10]
designed a large scale experiment of 1600 faults from 100
projects. Their experiment shows that EvoSuite can achieve
high coverage and effectively detect faults. Kochhar et al. [16]
conducted an empirical study on the test adequacy in 300
open-source projects. Just et al. [15] studied the usefulness
of mutation coverage in detection real faults.



Automated tools of testing as well as debugging can reduce
the manual effort by developers. However, the effectiveness
of automated tools is highly concerned. Existing studies have
explored the reliability of automated tools and tended to
identify the feasibility of applying these tools in practice.
Le et al. [17], [18] designed an predictive method on the
effectiveness of fault localization, which ranks suspicious
source code to assist debugging. Le et al. [20] proposed to
identify the feasibility of applying automated program repair
techniques to generate patches. Jiang et al. [13] proposed to
identify the cause of test alarms in the integration testing of
real systems. Grano et al. [11] developed machine-learning
methods to predict the coverage by test cases. Xu et al.
[28] characterized higher-order functions in Scala language
to prioritize functions that should be tested. Le et al. [19]
designed a method to identify the reliability of bug localiza-
tion, which recommends related source files to a given bug
report. Li et al. [21] proposed a recommendation method to
rank exception handling strategies for potential exceptions in
source code. Gu et al. [12] designed a predictive method for
crashing fault residence to identify whether the root cause of
a crash resides in the stack trace.

Tantithamthavorn and Hassan [27] have conducted an expe-
rience report on the pitfalls and the opportunities for practical
defect prediction. Jiarpakdee et al. [14] presented the impact of
correlation between metrics in the predictive models on defect
prediction.

In the study of test generation, Salahirad et al. [25] proposed
a controlled experiment to study the impacts among source
metrics, test metrics, and code coverage. Their study provided
detailed analysis for whether achieving high coverage can
effectively detect real faults. In this paper, we followed the
collected dataset by Salahirad et al. [25]. Different from the
existing work, our study shows that it is feasible to identify
detectable faults with given coverage measurements; we fur-
ther investigate the correlation between metrics of faulty code
and newly detected faults; our study also illustrated that the
choice of code coverage to minimize the number of undetected
faults within a limited time budget.

VII. CONCLUSIONS

We conducted a preliminary study on whether a fault can
be detected by automated test generation. We investigated de-
tected faults on a dataset of 742 faulty files with test generation
in two minutes and ten minutes per faults. Experimental results
show that RandomForest with SMOTE can achieve effective
prediction on detected faults for all coverage measurements;
the results also show that in a limited time budget of test
generation, trying multiple coverage measurements leads to
more detected faults than using one single type of code
coverage.

In future work, we plan to explore the reason of different
detectable faults with a large dataset of test execution. Such
exploration can provide a deep explanation for the factors
of fault detectability. We also plan to analyze the metrics of

faulty code to further understand potential relationship among
metrics, faults, and tests.
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