

MICHAC: Defect Prediction via Feature Selection based on Maximal Information
Coefficient with Hierarchical Agglomerative Clustering

Zhou Xu1, Jifeng Xuan1, Jin Liu1*, Xiaohui Cui2
1State Key Lab of Software Engineering, School of Computer, Wuhan University, Wuhan, China

2International School of Software, Wuhan University, Wuhan, China
{zhouxullx, jxuan, jinliu, xcui}@whu.edu.cn

Abstract—Defect prediction aims to estimate software reliabil-
ity via learning from historical defect data. A defect prediction
method identifies whether a software module is defect-prone or
not according to metrics that are mined from software pro-
jects. These metric values, also known as features, may involve
irrelevance and redundancy, which will hurt the performance
of defect prediction methods. Existing work employs feature
selection to preprocess defect data to filter out useless features.
In this paper, we propose a novel feature selection framework,
MICHAC, short for defect prediction via Maximal Infor-
mation Coefficient with Hierarchical Agglomerative Cluster-
ing. MICHAC consists of two major stages. First, MICHAC
employs maximal information coefficient to rank candidate
features to filter out irrelevant ones; second, MICHAC groups
features with hierarchical agglomerative clustering and selects
one feature from each resulted group to remove redundant
features. We evaluate our proposed method on 11 widely-
studied NASA projects and four open-source AEEEM projects
using three different classifiers with four performance metrics
(precision, recall, F-measure, and AUC). Comparison with five
existing methods demonstrates that MICHAC is effective in
selecting features in defect prediction.

Keywords—defect prediction; feature selection; maximal
information coefficient

I. INTRODUCTION
 Defect prediction aims to estimate software reliability

via learning from defect data. Based on the investigation of
historical metrics [1], [2], defect prediction identifies the
effect of design and testing process over a number of defects.
Therefore, defect prediction is often used to help to reasona-
bly allocate limited development and maintenance resources
[3], [4], [5]. In defect prediction, each software module is
viewed as a class label and a set of features. The class label
of a module denotes whether a module is defect-prone or not;
the set of features is used to build learnable models.

Many learning models have been proposed for defect
prediction [58], [65]. The performance of these models is
still vulnerable to irrelevant and redundant module features
that undermine the prediction effect. Previous results have
shown that the performance of predictive models improves
when irrelevant and redundant features are eliminated from
the original dataset [9], [48]. It is crucial to apply feature
selection to defect prediction since feature selection can filter
out irrelevant and redundant features by evaluating the con-

 * Corresponding author.

tributions of module features. The output of feature selection
is a subset of the original feature set. This feature subset is
more effective in distinguishing software modules.

However, directly applying feature selection is not suita-
ble to defect prediction. Existing work by Chen et al. [29]
and Liu et al. [30] shows that a combination of feature rank-
ing and clustering can improve the performance of predictive
models. Such work selects features for defect prediction
methods via manual setting the number of feature clusters. In
this paper, our proposed approach is motivated by the feature
selection method by Chen et al. [29]. In contrast, we enhance
feature ranking with a recently proposed relevance measure
and improve the feature clustering framework via automati-
cally determining the number of clusters without manual
setting.

In this paper, we propose a novel framework, MICHAC,
to support feature selection for defect prediction. MICHAC
is short for defect prediction via Maximal Information Coef-
ficient with Hierarchical Agglomerative Clustering, which
enhances feature selection for defect prediction via a two-
stage approach. Frist, MICHAC employs Maximal Infor-
mation Coefficient (MIC) [21] to rank candidate features to
remove irrelevant features; second, MICHAC groups fea-
tures with Hierarchical Agglomerative Clustering (HAC) and
selects one feature from each resulted group. Technically,
MIC has the advantage of exploring the hidden relationship
between two variables and resisting noise [21], [22]; HAC is
effective to cluster features that share a similar pattern [23].
In MICHAC, we determine the optimized number of clusters
according to the increment of a statistic measure, called in-
consistency coefficient.

We evaluate our proposed approach, MICMAC, by an-
swering three research questions on performance and gener-
ality. Experiments are conducted on 11 publicly available
projects in the NASA dataset. Experimental results show that
MICHAC can effectively select features to improve existing
defect prediction methods. On most of projects under evalua-
tion, MICMAC performs the best AUC and F-measure val-
ues. We also evaluate the generality of our method on four
projects in the AEEEM dataset. This experiment shows that
MICHAC can yield a competitive prediction performance
against the compared methods in defect prediction in open
source projects.

This paper makes the following contributions.
1. We propose a novel feature selection framework,

MICHAC, which combines an effective relevance measure
technique Maximal Information Coefficient (MIC) with a
clustering technique Hierarchical Agglomerative Clustering

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.34

370

(HAC). To the best of our knowledge, this is the first time to
introduce MIC as the relevance metric into the field of defect
prediction. The output of MICHAC is a subset of the original
feature set, which can be applied to any defect prediction
method, such as Naïve Bayes and Random Forest.

2. We utilize the inconsistency coefficient as a criterion
to select the optimized number of clusters when clustering
features of software modules. Comparing with existing work
[29], [30], we do not need to manually define the number of
clusters.

3. We experimentally evaluate MICHAC and five other
existing feature selection methods for defect prediction on 15
software projects.

II. BACKGROUND
In this section, we describe the background of our work

and two key techniques used in our proposed method.

A. Defect Prediction via Feature Selection
Defect prediction detects defect-prone modules based on

historical defect data. Most of existing work can be unified
as a binary-class machine learning problem, i.e., predicting
whether a module is defect-prone or not by learning from
known modules. A predictive model can be learnt based on
a set of extracted features of software modules. A feature of
modules could be metrics of software quality, such as the
count of lines of source code. In defect prediction, an origi-
nal feature set may hurt the performance of predictive mod-
els since many learning algorithms (e.g., Naïve Bayes [6], [7]
or Random Forrest [8], [9]) are sensitive to irrelevant or
redundant features.

Feature selection is a family of data preprocessing tech-
niques, which identifies a subset of representative features to
replace the original set. Classic feature selection techniques,
such as information gain and chi-square statistics [2], [53],
are employed to investigate the features of defect prediction.
In general, a feature selection algorithm ranks features ac-
cording to their relevance scores. The larger a score is, the
better the attribute is to distinguish between potential classes
[12]. Then the top-ranked features are selected as a subset of
representative features for predicting defects.

Our work is motivated by the success of feature selection
in defect prediction. Comparing with directly applying fea-
ture selection to defect prediction, we enhance feature selec-
tion in two directions. First, we employ a recently proposed
relevance measure, i.e., maximal information coefficient, to
improve the ability of selecting relevant features; second, we
use hierarchical agglomerative clustering to remove redun-
dant features. We describe two key techniques in our work as
follows.

B. Maximal Information Coefficient
Maximal Information Coefficient (MIC) was developed

as a robust measure of relevance by Reshef et al. in 2011
[21]. MIC has attracted much interest from academia be-
cause of its effectiveness as an indicator of measuring the
correlation between two variables [67], [68], [69], [70]. In
our work, we use MIC to detect the correlation between each
module feature and the class label (i.e., defect-prone or not).

MIC is based on the theory of mutual information; hence
we briefly introduce the mutual information before introduc-
ing MIC. Let � be a random variable with discrete values.
The entropy of X [11] is defined as
 ���� � �	
��� ��

������ (1)

where p(x) is the probability density function of �. Then the
joint entropy ���� �� of two random variables � and � is
defined as
 ���� �� � �	 	
��� �� ��

��� �������� (2)

To quantify the reduction in uncertainty about variable �
after observing variable��, or by symmetry, the reduction in
uncertainty about � after observing � , the mutual infor-
mation is introduced as follows.
 ���� �� � ���� � ���� � ���� �� (3)

i.e., ���� �� � 	 	
��� ����
 ������
�������������� (4)

Mutual information is a measure of independence. Based
on the above formula, the value of ���� �� = 0 if variables �
and � are independent; otherwise, the value is greater than
zero if they are dependent. In this case, the greater the value
is, the more relevant the two variables are [31], [32].

MIC is designed based on an ideal status: if there exists
a correlation between two variables � and � , then a grid
could be drawn on the scatter diagram of the two variables
to make most of the data points fall into several cells of the
grid. By searching for the optimal grid, MIC can calculate
correlation of two variables by counting the cells.

Given a finite dataset � , let � and � be two variables
with a sample size �; in our work, � and � denote a feature
and the class label with � software modules. Suppose that
the � value and � value of the two variables are divided into � bins and � bins, respectively, allowing empty bins, we call
this partition as an �-by-� grid. Let ��� denote the distribu-
tion of the points in � on the cells of a grid �. For each cell
of �, the probability mass of the cell is counted by dividing
the proportion of points falling into the cell with the total
points. Then for different �-by-� partitions, we can obtain
different distributions of ���.

For a specific �-by-� partition, the maximum mutual in-
formation of ��� is defined as

 � ��� �� �� � !"# ������ (5)

where ������ denotes the mutual information of ��� . That
is, � ��� �� �� is the maximum value of ������ for all cells
of the grid.

For different �-by-� partitions, we can obtain different
values of � ��� �� �� . Then, under different � -by-� parti-
tions, a characteristic matrix $��� can be constructed by
choosing the � ��� �� �� of each �-by-� partition as
 $������ � % �&�����

'()��*+,�-���.�
(6)

where normalizing by ��
��/0��-�� �.� can make the entries
of the matrix range from zero to one and guarantee that all

371

noiseless functions get perfect mutual information scores
[21]. Furthermore, the MIC value can be defined as
 1234����5 � !"#��67�8�-$������. (7)

where 9��� is the upper bound of the grid size. In this paper,
we follow [21] to set 9��� � �:;< as the default value. In
the context of defect prediction, given the class label �, we
calculate the MIC value for each feature �. We rank all orig-
inal features according to their MIC values and select a sub-
set of these features. This will be further explained in Section
III-B.

C. Hierarchical Agglomerative Clustering
We employ a Hierarchical Agglomerative Clustering

(HAC) algorithm to divide features into groups and thus to
reduce redundant features. In Section III-C, we will later
show how to group features via HAC based on the feature
values across software modules. Note that our goal is to
group features rather than modules and features are charac-
terized via their numeric values in software modules.

The clustering process of HAC is described below. First,
the algorithm treats each feature as a cluster and initializes
the distance of every two clusters. Then HAC merges the
nearest two clusters into a new cluster and calculates the
distance between the new cluster and other clusters. The
merging process repeats until a pre-defined criteria reaches
or all features belong to one group [33], [34]. HAC can form
a feature dendrogram of the resulting cluster hierarchy,
which serves as a valuable tool in visualization [35].

The distance between two features can be defined by the
similarity of these features, such as the cosine similarity and
the Pearson correlation coefficient. According to different
distance definitions, there are several kinds of commonly
used linkage methods for calculating the distance between
clusters, such as the single linkage method, the complete
linkage method, and the average linkage method. More de-
tailed description can be found in [36].

In this paper, we determine the final number of clusters
according to a statistic, called inconsistency coefficient dur-
ing clustering (in Section III-D). Based on this statistic, our
method avoids pointing out a specific number of clusters,
which was manually decided in existing work [29], [30].

III. OUR PROPOSED APPROACH, MICHAC
In this section, we first introduce the framework of our

proposed method; then we present the detailed steps in the
stages of feature ranking and feature clustering; finally, we
illustrate how to determine the number of clusters in the
stage of feature clustering.

A. Overview
We propose MICHAC, short for defect prediction via

Maximal Information Coefficient (MIC) with Hierarchical
Agglomerative Clustering (HAC). In MICHAC, we provide
a novel feature selection framework, which combines feature
ranking with feature clustering for defect prediction.
MICHAC selects an optimized subset of module features.
With the support of MICHAC, existing defect prediction

methods, such as Naïve Bayes, can benefit from a high-
quality training dataset that replaces the original one.

Fig 1 illustrates the overall structure of MICHAC. This
structure consists of two major stages: feature ranking and
feature clustering. In the stage of feature ranking, we meas-
ure the relevance of features with respect to the class label
via a new feature ranking technique based on MIC (in Sec-
tion II-B); this stage filters out module features that have a
low correlation with the class label. In the stage of feature
clustering, we cluster features into groups based on HAC (in
Section II-C); this stage eliminates redundant features via
selecting one feature per cluster. As a result, we construct an
optimized subset of module features, which is used to replace
the original feature set in defect prediction.

B. Feature Ranking Stage Based on MIC
In the stage of feature ranking, we mainly conduct the

relevance analysis between each feature with respect to the
class label. That is, features that can distinguish whether a
module is defect-prone or not are selected for the next stage
(in Section III-C). We rank features independently, without
considering any learning algorithm.

The input of feature ranking is a set of defect data,
which can be used to build a predictive model in defect pre-
diction. As shown in Fig. 1, feature ranking consists of three
major steps. In Step �, we preprocess defect data, such as
removing features with only one value and non-numeric
features. In addition, we convert the class label of modules
into binary label. Specifically, we label modules with one or
more defects as 1, otherwise as 0. In Step �, we calculate
the MIC values between each feature � and the class label �
based on Equation 7 in Section II-B. In Step �, we sort all
features based on their MIC values in descending order and

Figure 1. Overview of our proposed approach, MICHAC.

�Compute MIC value for
each feature

�Rank features and select
the top p features

�Cluster features

�Calculate the increment of
inconsistency coefficient
and determine the cluster

number based on the
maximum increment

 �Select one feature from
each cluster

Fe
at

ur
e

R
an

ki
ng

Fe
at

ur
e

C
lu

st
er

in
g

Initial feature subset

Raw data

Based on MIC

�Preprocess

Final feature subset

372

select the top p features which have the highest correlation
with respect to the class label. These selected features form
the initial subset of features for the next stage. The value of
 is defined as
 � =/> ��
/?, where / is the number of
the original features. The number of top features is set ac-
cording to Song et al. [24].

C. Feature Clustering Stage Based on HAC
The main goal of the stage of feature clustering is to

eliminate redundant features that have similar effect with
other features in distinguishing modules with different la-
bels. Note that in contrast to traditional clustering, our goal
is to group features rather than instances.

Feature clustering consists of three major steps. In Step
�, we use the HAC algorithm (in Section II-C) to cluster
the features that are selected as the initial subset in the pre-
vious stage. HAC is an iterative process, which merges cur-
rent clusters continuously. It is possible that a current cluster
only contains one feature, e.g., each feature is treated as one
cluster at the beginning of the iteration. In HAC, features
are merged into clusters according to the distances between
current clusters. We employ the average linkage method to
define the distance of two current clusters [26]. The average
linkage between two clusters is defined as the average of the
distance between any feature pair between two clusters.
Suppose that @A and @B are two current clusters during the
clustering process. The distance of the two clusters �A�B can
be calculated by the following formula:
 �A�B � C

DEDF
	 GH�I�J�KE��L�KF (8)

where /Aand /B are the number of features inside clusters
@A and @B and GH�I is the distance between two features �H
and �I. We define the distance GH�I of two features �H and �I
with Pearson correlation coefficient MH�I as follows.

 GH�I � N � MH�I (9)

For two given features, Pearson correlation coefficient
measures the relevance between numeric values of both
features in instances [25]. Given two module features �H and
�I, the observation vectors of features are symbolized as n-
dimension vectors, i.e., O�HC� �HP� Q � �H8R and O�IC� �IP� Q � �I8R, respectively, where values �HS and �IS de-
note the numeric values of the features �H and �I in the Tth
instance (T � N�U� Q � �) and � is the number of instances in
the dataset. As mentioned in Section III-B, we select top

features as the initial subset of features. Then the correlation
coefficient MH�I for features �H and �I is calculated by the
following formula.
 MHI � 	 ��JVW�XJ���LVW�XL�YVZ[

\	 ��JVW�XJ�]YVZ[4�LVW�XL5]YVZ[
 (10)

where �XH � C
8 	 �HS8S^C and��XI � C

8 	 �IS8S^C (0 � N�U� Q �
, _ �
N�U� Q �
, and
 is the number of current features after the stage
of feature ranking in Section III-B). In this step, we record all
information during clustering, including the orders of merg-
ing and distances between clusters [37].

Step � determines when to stop the process of cluster-
ing according to the recorded information during clustering
all features. In our work, we choose the number of final
clusters by maximizing the increment of inconsistency coef-
ficient during the clustering process of HAC.

Inconsistency Coefficient (IC) is used to quantitatively
express the relatively consistent of one link [73]. A link de-
notes an action of merging two current clusters. The value
of inconsistency coefficient can be calculated by comparing
the distance of the current link and the average distance of
its neighbors. The neighbors of one specific link denote all
children links that lead to this link as well as the link itself.
For each link, we count its IC value of a link `abcc to meas-
ure the change of clustering as follows.

23�`Mdee� � �`Mdee � "f
��`YgJhiFjk�
lmn��`YgJhiFjk� (11)

where lmn��oYgJhiFjk� denotes the standard deviation of all
links in its neighbors. We define the increment of IC values
between two links as poqrkk�oskgt� 23�`abcc� � 23�`�cuv� ,
where `abcc and `�cuv denote a current link and its previous
link, respectively. Then we find the link with the maximal
increment value and stop the process of HAC clustering
before this link [19], [37]. We will illustrate the calculation
of inconsistency coefficient in Section III-D.

In Step �, for each cluster, we select the feature with the
maximal MIC value as the representative feature. Then w
features are finally selected from w clusters. These features
form the final subset of features, which replaces the original
training set and serves as the input of defect prediction
methods.

D. Inconsistency Coefficient in HAC
We use a simple clustering dendrogram to visualize the

concept above. Fig.2 shows a clustering dendrogram includ-
ing three module features xC, xP, and xy.

At first, features xC, xP, and xy are treated as three initial
clusters. As shown in Fig. 2, first, xC and xP are linked to a
cluster, labeled xz ; then xz and xy are linked to a cluster,
labeled x{. The link `C�P between xC and xP and the link `z�y
between xz and xy are shown in the dendrogram. According
to Equation 9 and Equation 10, the distance between xCand
xP is �N�U � GN�U � N � MN�U, where MN�U denotes the Pearson
correlation coefficient of xCand xP, GN�U denotes the distance
of two features xCand xP , and �N�U denotes the distance of
two clusters (initialized based on xC and xP). Meanwhile,
according to Equation 8, the distance between xz and xy is
the average distance between any feature pair between clus-
ter xz and cluster xy, namely �|�} � �GN�} � GU�}�>U

The inconsistency coefficient value of the link `z�y (at
the depth of two in the dendrogram) can be calculated as
follows,

23�`z�y� � &~��W��[�]��~��
]

���; (12)

where lmn; denotes the standard deviation of �N�U and �|�}.

373

We determine the final number of clusters according to
the increment of inconsistency coefficient. The detail of
selecting the number of final clusters is as follows. In the
process of merging two clusters, i.e., building a link, a
higher increment of inconsistency coefficient indicates that
the link of merging previous clusters will lead to a better
clustering result. Then we determine the optimized number w of clusters according to the maximal increment of incon-
sistency coefficient. Specifically, for all the links, if the in-
crement of the inconsistency coefficient of one link is the
maximal, we take the cluster number of the pervious one of
this link as the final cluster number.

IV. EXPERIMENTAL SETUP

A. Projects in the NASA Dataset
Our experiments are mainly conducted on 11 widely-

studied projects in the NASA dataset [13]. The NASA da-
taset was donated by Menzies and was cleaned by Shepperd
et al. [10]. Software modules in these projects are character-
ized with static code metrics, such as LOC counts, Halstead
complexity metrics, McCabe complexity metrics. These
metrics closely relate to software quality. For instance, LOC
counts measures the number of code lines; the Halstead
complexity measure the complexity of the program accord-
ing to the total number of operators and operands in the pro-
gram [41]; McCabe Complexity is based on the analysis
towards program flow chart and identifies the complexity by
calculating the number of direct circles of the strongly
connected flow chart [54]. Table I shows the details of the
datasets, where # features, # modules, # defective modules
and % defective modules denote the number of features, the
number of modules, and the number of defective modules,
and the percentage of defective modules, respectively.

Table II lists the maximal increment of inconsistency
coefficient and the corresponding number of features select-
ed by our MICHAC method, as mentioned in Section III-D.
We find that the maximal increment varies among different
projects. The average number and percentage of selected
features are 7.5 and 24.6%, respectively.

B. Research Questions
Our evaluation answers three Research Questions (RQs),

including both performance and generality.
RQ1. Does our method MICHAC, perform better than

state-of-the-art feature selection methods on defect predic-
tion?

This question validates the important criterion of defect
prediction: the performance improvement in terms of defec-
tive precision, recall, F-measure and AUC (as defined in
Section IV-D). To answer this question, we compare our
method against three classic feature selection methods (Chi-
Square, Gain Ratio and ReliefF) and two recently proposed
feature selection methods (TC [29] and FECAR [30]).
Methods in comparison will be described in Section IV-C.

RQ2. Is the feature clustering strategy in MICHAC ef-
fective, comparing with the same method without feature
clustering?

MICHAC mainly consists of two stages, feature ranking
stage and feature clustering stage. Feature ranking, derived
from the family of feature selection algorithms, filters out
irrelevant features while feature clustering is added to re-
move redundant features. To investigate the effectiveness of
feature clustering, we compare MICHAC with the same
algorithm without feature clustering strategy, called MIC for
short.

RQ3. Can our method be generalized to other datasets?
The NASA dataset in Section IV-A is widely-studied in

defect prediction. Our evaluation in this paper is also con-
ducted on this dataset. However, we tend to investigate
whether our proposed method can be applied to other da-
tasets. We employ another popular dataset, AEEEM, to
evaluate the generality of our work.

C. Methods in Comparison
We compare our method with three classic feature

selection methods in defect prediction [2], [18]: Chi-Square,
Gain Ratio and ReliefF. We also compare our work with
two existing feature selection methods, which are originally
designed for defect prediction: TC [29] and FECAR [30].

These five methods are briefly described below. In the
domain of software defect prediction, the Chi-Square (CS)
statistic measures the independence between the feature x
and the class label M [38], [39]. Gain Ratio (GR) is an up-
dated version of the information gain by penalizing multi-
valued attributes to counter the bias [40]. ReliefF (ReF) is

Figure 2. A simple clustering dendrogram with three features.

TABLE I. PROJECTS IN THE NASA DATASET USED IN OUR EXPERIMENT

Project # features # modules # defective modules% defective modules

CM1 37 344 42 12.2%

JM1 21 9593 1759 18.3%

KC1 21 2096 325 15.5%

KC2 21 522 107 20.5%

MC1 38 9277 68 0.7%

MC2 39 127 44 34.6%

MW1 37 253 27 10.7%

PC1 37 759 61 8.0%

PC3 37 1125 140 12.4%

PC4 37 1399 178 12.7%

PC5 38 1711 471 27.5%

374

an extension of the Relief method that can solve the multi-
class learning problem [43]. Note that these three methods
are different representative of feature selection methods.
The CS, GR, ReF are based on statistics, entropy, and in-
stances, respectively. The number of features in these meth-
ods is set to ����P/��where / is the number of original
features. This setting is suggested by Khoshgoftaar et al. [44]
and Gao et al. [2]. Their work shows that various classifiers
in defect prediction are appropriate to this setting.

TC is a feature selection method combining feature
ranking and feature clustering proposed by Chen et al. [29].
This method uses symmetrical uncertainty to removing ir-
relevant features and then employs a threshold-based clus-
tering to eliminate redundant features. Another similar
framework is FECAR, proposed by Liu et al. [30]. This
framework first applies the k-medoids clustering to group
the features, and then selects a certain number of features
per cluster to form the final feature subset. There are three
variants of FECAR; we select the one using information
gain, which performs best among three variants. Both of
these two methods require manually setting the number of
clusters. In our evaluation, we follow the original work to
set the number of clusters. In both papers, the final feature
numbers are set to ����P/�, which is derived from Khosh-
goftaar et al. [44] and Gao et al. [2].

D. Evaluation Metrics
In this paper, we used F-measure and AUC as main met-

rics to compare the performance of classifiers.
1) F-measure: There are four possible outcomes from a

binary predictive model on a test set: classifying a defective
module as defective (����), classifying a defective module
as defect-free (����), classifying a defect-free module as
defect-free (����), and classifying a defect-free module as
defective (����) [28]. Based on the possible output,
defective precision, defective recall, defective F-measure
are defined as follows:

defective precision, ��G� � 8���
8����8���

defective recall, ��G� � 8���
8����8���

defective F-measure, ��G� � P����������
���������

Defective F-measure is the harmonic mean of defective
precision and defective recall. We highlight this evaluation
metric in our analysis of classifier performance in this paper.
In general, the greater the F-measure is, the better the pre-
diction performance of the classifier is.

2) AUC: AUC is an abbreviation of Area Under the ROC
Curve, which is widely used in defect prediction [7], [14],
[15]. An ROC is a curve plotted on a two dimensional plane
with the true positive rate as y-axis and the false positive
rate as x-axis, so this curve is used to visualize the
performance of binary classifiers. The curve of ROC
illustrates the trade-off between true positive and false
positive [50], [51]. This curve is used to evaluate the
different classifier performance; meanwhile, this curve can
be used to compare the influence of different feature sets
towards a classifier. Nevertheless, since a curve like ROC
cannot quantitatively describe the classifier performance, it
is common to calculate the relative area under the curve (so-
called AUC) as a single scalar value [66]. In defect
prediction, AUC is regarded as a performance metric of
various classifiers over different software projects [7]. In
general, a higher AUC value indicates that the classifier
performance is better.

In experiments, we performed 10-fold cross validation
when training classifiers on the selected features throughout
this paper, to avoid any potential problem of overfitting
particular training and test sets within a specific project. In
10-fold cross validation, a dataset is divided into 10 folds at
random. Nine of the ten folds take turns to be used as the
training set while the other fold is used as the test set. The
training data are used to build a classifier; then the built
classifier is evaluated on the test data. The final result of
performance evaluation is the average of the 10 results.

E. Defect Prediction Models
In order to compare the performance of feature selection

methods, we employ three representative classifiers in de-
fect prediction, Naive Bayes (NB) [45], Random Forest (RF)
[46], and Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) [49]. The reason we choose these clas-
sifiers is that these classifiers fall into three different fami-
lies of learning methods. NB is a probabilistic classifier [32];
RF is a decision-tree classifier [47]; and RIPPER is a rule-
based classifier [49], [55].

In this paper, experiments were conducted on a
workstation with an Intel Core i7-4790 CPU with 3.60 GHz.
We implemented feature selection methods in Java with the
Weka package and used the classifiers inside Weka with the
default parameter settings [51]. We calculate MIC values
via the MINE toolkit [56] and implement MICHAC in
Matlab 7.0.

V. EXPERIMENTAL RESULTS
We present the experimental results to answer our three

research questions on performance and generality in this
section.

TABLE II. NUMBER OF SELECTED FEATURES BY MAXIMIZING THE INCREMENT OF INCONSISTENCY COEFFICIENT IN MICHAC ON 11 PROJECTS

Project CM1 JM1 KC1 KC2 MC1 MC2 MW1 PC1 PC3 PC4 PC5 AVG

Maximal increment 2.762 1.825 1.978 2.134 2.345 2.913 1.788 2.672 2.602 1.966 2.429 2.310

Selected feature 8 8 9 6 9 5 5 9 8 12 4 7.5

% Selected feature 21.1 36.4 40.9 37.5 23.1 12.5 13.2 23.7 21.1 31.6 10.3 24.6

375

A. RQ1, Does our method MICHAC, perform better than state-of-
the-art feature selection methods on defect prediction?
As mentioned in Sections IV-C, we compare our method

MICHAC with three widely-studied feature selection meth-
ods (CS, GR, and ReF) and two recently-proposed methods
in defect prediction (TC and FECAR).

Table III records the average defective precision, recall
and F-measure of all 11 NASA projects with five different
feature selection methods on three classifiers, NB, RF and
RIPPER. The column “Full” denotes the training set with-
out involving any feature selection method; P, R, and F de-
note the defective precision, recall, and F-measure, respec-
tively; W/D/L, short for Win/Draw/Loss, presents the num-
ber of projects, on which MICHAC performs better than,
the same as, or worse than another method, in terms of F-
measure [42], [64].

Table III shows that on all three classifiers, MICHAC
performs better F-measure values than all the other methods.
Besides MICHAC, FECAR performs well. For NB classifi-
er, MICHAC achieves the best average F-measure value,
but fails in the best precision or recall. Regarding the aver-
age precision, MICHAC is inferior to the CS, GR and
FECAR; regarding the average recall, MICHAC is inferior
to Full and ReF. For RF classifier, MICHAC can achieve
the best precision and F-measure values. For RIPPER clas-
sifier, MICHAC can achieve the best values in terms of all
the three metrics, comparing with all other methods. Among
all feature selection methods in our experiment, RF classifi-
er with MICHAC reaches the best F-measure as well as the
best precision.

The Win/Draw/Loss values shows that, on three classifi-
ers, MICHAC outperforms others on over half of projects in
terms of F-measure, except the Full method on RF classifier,
and the CS and FECAR methods on RIPPER classifier.

Fig. 3 shows the box-plots of F-measure values, with six
methods for three classifiers on 11 projects. For the NB
classifier, the median value by MICHAC is higher than that
by GR, ReF, and TC, while is very similar with that by CS
and FECAR. In addition, the maximum by MICHAC is
much higher than that by other methods except ReF. For RF
classifier, the median value by MICHAC is much higher

than that by all other methods, and the maximum by
MICHAC is much higher than that by other methods except
FECAR. For RIPPER classifier, the median value by
MICHAC is much higher than that by ReF and TC, while is
a litter lower than that by CS. In addition, the maximum by
MICHAC is much higher than that by all other methods
except TC.

We perform the Wilcoxon signed-rank test [71] to ana-
lyze whether the performance values of MICHAC is statis-
tically significant different with those of the compared
methods on three classifiers over all projects. The Wilcoxon
signed-rank test is a non-parameter method of statistically
significant test. For the performance values of two methods
compared, the null hypothesis is that there exists no signifi-
cant difference between the two methods. If the p-value that
results from Wilcoxon test is less than 0.05, the null hy-
pothesis is rejected. That is, the difference between the two
methods is identified as statistically significant. The signifi-
cant test is implemented in IBM SPSS Statistics [62]. In
additional, we compute the effect size, Cliff’s Delta (d) [72],
to quantify the amount of difference between two methods.
A positive d indicates that the performance of the prevision
method has a greater effect than that of the latter method
[16], [63]. For the sake of space limitation, in this paper we
only list the detailed p-values and d-values in term of AUC
for the NASA dataset since AUC is widely used as a per-
formance evaluation metric in defect prediction [4], [7],
[48].

Tables IV, V, and VI present the detailed AUC values of
each project on three classifiers with the p-values and d-
values. From these tables, we can observe that MICHAC
can achieve the best AUC values on NB classifier and
RIPPER classifier, but a little weaker than the Full method
on RF classifier. The Full method and MICHAC in Table V
shows that there exists a threat that feature selection hurts
the performance for a specific defect prediction method.
The Win/Draw/Loss records also indicate that MICHAC
wins other methods on most projects on three classifiers in
term of AUC metric. An exception is the Full method on RF
classifier, where MICHAC wins and losses on 4 and 7 out

TABLE III. AVERAGE PERFORMANCE OF 11 NASA PROJECTS WITH
THREE CLASSIFIERS ON PRECISION, RECALL, AND F-MEASURE

Model Metric Full MICHAC CS GR ReF TC FECAR

NB

P 0.407 0.427 0.440 0.454 0.350 0.410 0.442
R 0.429 0.397 0.332 0.366 0.424 0.342 0.376
F 0.350 0.373 0.359 0.360 0.355 0.346 0.367

W/D/L 7/1/3 8/1/2 7/0/4 6/0/5 6/1/4 6/0/5

RF

P 0.540 0.560 0.488 0.498 0.468 0.526 0.501
R 0.288 0.311 0.302 0.311 0.258 0.287 0.321
F 0.372 0.392 0.366 0.377 0.326 0.367 0.385

W/D/L 4/1/7 8/1/2 8/0/3 9/0/2 7/0/4 7/0/4

RIPPER

P 0.488 0.550 0.535 0.536 0.423 0.498 0.530
R 0.268 0.280 0.266 0.255 0.171 0.237 0.267
F 0.333 0.351 0.345 0.334 0.230 0.309 0.344

W/D/L 7/0/4 4/0/7 7/0/4 9/0/2 8/0/3 5/0/6

Figure 3. Box-plots for F-measure on 11 NASA projects with three
classifiers.

0

0.1

0.2

0.3

0.4

0.5

0.6

F
-m

e
a

su
re

M
IC

HAC CS GR
ReF TC

FECAR

M
IC

HAC CS GR
ReF TC

FECAR

M
IC

HAC CS GR
ReF TC

FECAR

NB RIPPERRF

376

of 11 projects, respectively. Although only nearly half of p-

values are lower than 0.05, the d-values indicate that in al-
most all cases, MICHAC have a greater effect than other
methods, except for the Full method on RF classifier (-
0.074) and FECAR method on RIPPER classifier (-0.025).

To conclude the above observation, our method can
yield better prediction results than the compared methods of
feature selection in defect prediction.

B. RQ2, Is the feature clustering strategy in MICHAC effective,
comparing with the same method without feature clustering?
As mentioned in Section III, our proposed method,

MICHAC, can be viewed as a combination of two stages,
feature ranking and feature clustering. Comparing with gen-
eral feature selection, such as CS or GR, the stage of feature
clustering in MICHAC can introduce further refinement of
the subset of features. We compare MICHAC with the
method only used MIC to illustrate the influence of redun-
dant features in defect prediction.

Table VII shows the average defective precision, recall,
F-measure, and AUC values of 11 NASA projects on three
classifiers as well as the p-values and d-values with respect
to AUC. We can observe that all the four metrics of
MICHAC are better than those of MIC on all three classifi-
ers. The Win/Draw/Loss records show that MICHAC wins
MIC as well, especially on NB classifier; MICHAC wins
MIC on all projects in terms of F-measure and AUC. The p-
values indicate that there exists significant difference be-
tween the performance of MICHAC method and that of
MIC method on NB classifier and RF classifier. The non-
negative d-values indicate that effect size of MICHAC
method is greater than that of MIC method on NB classifier
and RF classifier.

Fig. 4 shows the box-plots of F-measure and AUC val-
ues, for MICHAC and MIC, with three classifiers on 11
projects. The median values of both metrics of MICHAC
are higher than those of MIC, except on RIPPER classifier.
Meanwhile, for F-measure, the maximum by MICHAC is
higher than that by MIC method on NB classifier and RF
classifier. For AUC, the maximum by MICHAC is higher
than that by MIC on NB classifier and RIPPER classifier
while is a litter lower on RIPPER classifier. Moreover, the
minimum by MICHAC is higher than that by MIC for two
metrics on NB classifier and RF classifier.

Experimental results show that MICHAC outperforms
MIC. The reason is that HAC keeps the features that can

TABLE IV. AUC VALUES ON 11 NASA PROJECTS USING NAÏVE BAYES
WITH THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D)

Project Full MICHAC CS GR RF TC FECAR
CM1 0.694 0.725 0.729 0.75 0.752 0.72 0.75
JM1 0.678 0.642 0.629 0.629 0.624 0.682 0.636
KC1 0.791 0.791 0.783 0.774 0.782 0.798 0.78
KC2 0.832 0.836 0.816 0.817 0.827 0.833 0.825
MC1 0.892 0.917 0.768 0.812 0.845 0.87 0.883
MC2 0.717 0.722 0.637 0.637 0.627 0.666 0.63
MW1 0.728 0.774 0.714 0.714 0.737 0.736 0.735
PC1 0.768 0.788 0.663 0.701 0.673 0.795 0.777
PC3 0.743 0.785 0.783 0.778 0.784 0.735 0.784
PC4 0.825 0.837 0.823 0.835 0.823 0.807 0.823
PC5 0.69 0.66 0.651 0.617 0.64 0.708 0.624
AVG 0.760 0.771 0.727 0.733 0.738 0.759 0.750

W/D/L 8/1/2 10/0/1 10/0/1 10/0/1 7/0/4 10/0/1
p-value 0.169 0.006 0.016 0.021 0.374 0.021

d 0.116 0.355 0.314 0.240 0.041 0.190

TABLE V. AUC VALUES ON 11 NASA PROJECTS USING RANDOM
FORREST WITH THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D)

Project Full MICHAC CS GR RF TC FECAR
CM1 0.782 0.795 0.732 0.728 0.75 0.812 0.728
JM1 0.76 0.742 0.721 0.721 0.733 0.692 0.729
KC1 0.83 0.802 0.793 0.744 0.789 0.796 0.793
KC2 0.825 0.812 0.782 0.808 0.798 0.81 0.795
MC1 0.923 0.93 0.879 0.918 0.916 0.929 0.937
MC2 0.682 0.658 0.588 0.588 0.575 0.691 0.573
MW1 0.716 0.737 0.696 0.696 0.641 0.719 0.754
PC1 0.844 0.858 0.839 0.854 0.844 0.84 0.804
PC3 0.864 0.848 0.835 0.844 0.85 0.822 0.849
PC4 0.944 0.942 0.887 0.916 0.887 0.845 0.914
PC5 0.8 0.754 0.759 0.749 0.759 0.777 0.755
AVG 0.815 0.807 0.774 0.779 0.777 0.794 0.785

W/D/L 4/0/7 10/0/1 11/0/0 9/0/2 8/0/3 7/0/4
p-value 0.197 0.004 0.003 0.008 0.248 0.068

d -0.074 0.223 0.207 0.174 0.099 0.157

TABLE VI. AUC VALUES ON 11 NASA PROJECTS USING RIPPER WITH
THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D)

Project Full MICHAC CS GR RF TC FECAR
CM1 0.516 0.541 0.542 0.513 0.494 0.51 0.55
JM1 0.553 0.563 0.56 0.554 0.541 0.54 0.545
KC1 0.578 0.587 0.59 0.582 0.588 0.599 0.594
KC2 0.698 0.749 0.722 0.641 0.711 0.727 0.71
MC1 0.626 0.619 0.614 0.632 0.623 0.614 0.612
MC2 0.576 0.584 0.573 0.582 0.595 0.601 0.582
MW1 0.633 0.602 0.682 0.682 0.581 0.63 0.657
PC1 0.581 0.558 0.569 0.578 0.5 0.554 0.565
PC3 0.538 0.574 0.527 0.551 0.542 0.539 0.561
PC4 0.73 0.761 0.689 0.689 0.528 0.6 0.694
PC5 0.623 0.591 0.615 0.61 0.54 0.628 0.623
AVG 0.605 0.612 0.608 0.601 0.568 0.595 0.608

W/D/L 7/0/4 6/0/5 7/0/4 8/0/3 7/0/4 6/0/5
p-value 0.35 0.593 0.477 0.016 0.424 0.722

d 0.041 0.041 0.041 0.397 0.058 -0.025

TABLE VII. COMPARISON BETWEEN MICHAC AND MIC ON 11 NASA
PROJECTS

Model NB RF RIPPER
Metric MICHAC MIC MICHAC MIC MICHAC MIC

P 0.427 0.405 0.560 0.539 0.550 0.544
R 0.397 0.347 0.311 0.310 0.280 0.270
F 0.373 0.309 0.392 0.388 0.351 0.347

W/D/L 11/0/0 7/0/4 6/0/5

AUC 0.771 0.715 0.807 0.780 0.612 0.608
W/D/L 11/0/0 9/0/2 5/1/5

p-value 0.003 0.021 0.878

d 0.438 0.165 -0.008

377

distinguish the class label. In details, we first remove irrele-
vant features, which have little beneficial effect on defect
prediction. Then we employ a HAC to group features that
share a similar pattern into a cluster and select one feature
with the highest MIC value from each cluster to construct
the final features subset. Thus, all the selected features can
almost make a contribution to identify the class label.

To sum up, MICHAC seeks a better feature subset that
are the most useful for defect prediction. The results con-
firm that redundant features can indeed hurt the prediction
performance.

C. RQ3, Can our method be generalized to other datasets?
To further investigate the generality of our MICHAC on

other software projects, we apply our method to four soft-
ware projects in the AEEEM dataset. This dataset was col-
lected by D'Ambros et al [17], aiming to perform defect
prediction at the granularity of class level. Features in this
dataset include the change metrics, source code metrics,
entropy of source code metrics, churn of source code met-
rics, etc. Table VIII shows the details of these four projects.

Table IX presents the result comparison between
MICHAC and five feature selection methods in defect pre-
diction. On NB classifier and RIPPER classifier, the preci-
sion, recall, and F-measure do not perform the best; but on
RF classifier, the recall and F-measure values of MICHAC
are superior to those of all other methods. In addition, the
AUC values by MICHAC are higher than those by all the
other methods on NB classifier and RIPPER classifier. Alt-
hough the p-values with respect to AUC indicate that there
exists no significant difference between the performance of
MICHAC and those of the compared methods on three clas-
sifiers, the Cliff’s Delta d-values suggest the superiority of
the effect size of MICHAC to those of the compared meth-
ods, except the two cases with the Full method on RF classi-
fier (-0.125) and CS method on RIPPER classifier (-0.063).

As mentioned above, we find that our feature selection
method can be applied to other software projects for defect
prediction and can obtain a competitive prediction perfor-
mance, comparing with results of other methods.

VI. THREATS TO VALIDITY
In this subsection, we discuss several main types of va-

lidity threats that affect our studies.
External validity. Threats to external validity occur

when the results of our experiments cannot be generalized.
As a preliminary result, we performed our experiments on
the NASA and AEEEM datasets to explore the generality of
our method. The NASA dataset has been widely used in
many software defect prediction studies, thus it provides us
a way to compare our method with some representative fea-
ture selection methods for defect predict. Additional studies
are needed to evaluate how well our method can be general-
ized.

Internal validity. We list several concerns about the bi-
as in classifier selection and the incorrect implementation
process of experiments. To avoid these threats, we choose
three state-of-the-art classifiers, which represent three cate-
gories: NB as a probabilistic model, RF a decision-tree
model, RIPPER as a rule-based model. For the implementa-
tion, we use WEKA and the MINE tools to avoid the poten-
tial faults during the implementation process of the experi-
ment.

Construct validity. In experiments, we mainly use F-
measure and AUC metrics to measure the effectiveness of

Figure 4. Box-plots for F-measure and AUC on 11 projects with three

classifiers.

TABLE VIII. FOUR PROJECTS IN THE AEEEM DATASET

Project # features # modules # defective
modules

% defective
modules

Eclipse-JDT 77 997 206 20.7%

Equinox 77 324 129 39.8%

Mylyn 77 1862 245 13.2%
Eclipse-

PDE 77 1497 209 14.0%

TABLE IX. AVERAGE PERFORMANCE OF FOUR AEEEM PROJECTS
WITH THREE CLASSIFIERS ON FOUR METRICS

Model Metric Full MICHA
C CS GR ReF TC FECA

R

NB

P 0.538 0.549 0.594 0.567 0.491 0.547 0.582
R 0.418 0.412 0.419 0.343 0.316 0.343 0.414
F 0.468 0.469 0.491 0.426 0.376 0.420 0.481

W/D/L 2/0/2 2/0/2 3/0/1 3/0/1 3/0/1 1/0/3
AUC 0.771 0.780 0.772 0.734 0.733 0.759 0.772

W/D/L 3/0/1 2/0/2 3/0/1 4/0/0 3/0/1 2/0/2

RF

P 0.673 0.667 0.610 0.528 0.535 0.601 0.608
R 0.421 0.425 0.399 0.383 0.376 0.417 0.406
F 0.490 0.500 0.471 0.427 0.426 0.475 0.465

W/D/L 4/0/0 2/0/2 4/0/0 3/0/1 2/0/2 3/0/1
AUC 0.839 0.832 0.776 0.748 0.806 0.794 0.784

W/D/L 1/0/3 4/0/0 4/0/0 3/0/1 4/0/0 4/0/0

RIPPE
R

P 0.569 0.574 0.579 0.537 0.532 0.590 0.576
R 0.393 0.398 0.400 0.346 0.302 0.390 0.381
F 0.446 0.449 0.458 0.392 0.350 0.448 0.447

W/D/L 3/0/1 1/0/3 3/0/1 3/0/1 2/0/2 2/0/2
AUC 0.662 0.669 0.659 0.643 0.629 0.660 0.658

W/D/L 3/0/1 2/0/2 4/0/0 3/0/1 2/0/2 2/0/2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
IC

HAC
M

IC

M
IC

HAC
M

IC

M
IC

HAC
M

IC

M
IC

HAC
M

IC

M
IC

HAC
M

IC

M
IC

HAC
M

IC

NB RIPPERRF RIPPERRFNB

F-measure AUC

378

the defect prediction performance using different feature
selection methods on three classifiers. However, the choice
of these two metrics is based on previously published em-
pirical work and we have not provided any proof. A poten-
tial solution is to theoretically optimize the benefit of pre-
dictive results [27]. A further discussion about metrics in
defect prediction is expected in the future.

VII. RELATED WORK

A. Classic Models in Defect Prediction
Many researchers have proposed various models for de-

fect prediction in terms of within-projects defect prediction.
Zimmermann et al. [57] showed that employing network
analysis based on a dependency graph can be efficient to
predict the central program units, which are defect-prone on
Windows Server 2003. Thwin et al. [58] employed Ward
neural network and General Regression neural network
models for predicting the number of software defects. They
found that those two models can achieve a good perfor-
mance when using the object-oriented metrics. Recently,
Jing et al. [59] proposed a novel cost-sensitive dictionary-
learning model for defect prediction. This method can
achieve the best recall and F-measure metrics among exist-
ing methods.

For cross-project defect prediction, Zimmermann et al.
[60] applied decision tree and logistic regression models for
cross-project defect prediction on 12 real-world software
application projects. They found that the data and the pro-
cess metric are important for prediction performance. Nam
et al. [61] introduced transfer learning to utilize the feature
information of the source projects to help the target projects
for defect prediction. They have shown that this method can
achieve an acceptable prediction performance for target
projects that have limited historical training dataset. Jing et
al. [74] proposed a novel method employing canonical cor-
relation analysis for heterogeneous cross-project defect pre-
diction on 14 open software projects. This method can
match the distribution of the source and the target datasets
maximize the correlation between both datasets.

B. Feature Selection in Defect Prediction
A number of prior studies have investigated feature se-

lection methods on predicting defective software modules.
Gao et al. [20] studied four different filter-based feature
selection methods with five different classifiers on a large
telecommunication system and found that the Kolmogorov-
Smirnov method performed the best. Gao et al. [2] present-
ed a comparative investigation to evaluate their proposed
hybrid feature selection method, which first uses feature
ranking to reduce the search space and then applies feature
subset selection. Results indicated that removing 85 percent
of features does not adversely affect prediction perfor-
mance.

Prior studies have shown that feature selection can help
to identify defect-prone changes [48]. In order to investigate
different feature selection methods to classification-based
bug prediction, Shivaji et al. [52] utilized six feature selec-

tion methods to iteratively remove irrelevant features until
achieving the best performance of F-measure.

Different from our feature selection framework, all the
feature selection methods of the above literatures are only
aimed at eliminating irrelevant features with respect to the
class label, while our framework considers removing redun-
dancy within features.

Recently work proposes a combined framework to apply
feature selection to eliminate both irrelevant and redundant
features from the original dataset. Chen et al. [29] proposed
a two-stage data preprocessing framework, TC, which com-
bines feature selection and instance reduction [53]. In the
feature selection phase, they proposed a new algorithm us-
ing feature selection and threshold-based clustering. Liu et
al. [30] proposed a new feature selection framework,
FECAR, to conduct feature clustering and feature ranking.
FECAR first clusters features via k-medoids method and
then select several representative features from each cluster.

In our paper, the MICHAC approach is similar to the
feature selection framework in [29]. The differences be-
tween MICHAC and TC as well as FECAR are as follows.
TC uses symmetrical uncertainty to conduct feature ranking
and feature clustering while our framework MICHAC uses
maximal information coefficient with hierarchical agglom-
erative clustering to conduct feature ranking and feature
clustering, respectively. Similarly, FECAR employs the k-
medoids clustering to detect representative features. Mean-
while, as mentioned in Section III-B, in MICHAC, the
number of clusters is automatically determined according to
the increment of inconsistency coefficient.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel feature selec-

tion method, MICHAC, to select an optimized feature sub-
set towards improving defect prediction performance. The
method involves the following two stages: in the first stage,
we introduce MIC statistic to select the highly relevant fea-
tures with respect to the class label; in the second stage, we
leverage HAC algorithm to eliminate the redundant fea-
tures. Experiments on 11 NASA projects and four addition-
al AEEEM projects indicate that the proposed method,
MICHAC, can perform competitive results and scale to
open source projects for defect prediction tasks.

In the future, we plan to apply our method to other clas-
sifiers to study the effect of feature selection on classifiers
for defect prediction. Meanwhile, we would like to employ
complex projects that contain more features to validate the
generality of our feature selection method. In addition, we
plan to apply our method, MICHAC, to cross-project defect
prediction to identify defects with different development
backgrounds.

ACKNOWLEDGMENT
This work is partly supported by the grants of National

Natural Science Foundation of China (No.61572374,
No.U1135005, No.61502345) and the Fundamental Re-
search Funds for the Central Universities
(No.2042014kf0272, No.2014211020201).

REFERENCES

379

[1] F. Rahman, D. Posnett, Devanbu P. Recalling the imprecision of
cross-project defect prediction Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering. p.61. ACM, 2012.

[2] K. Gao, T.M. Khoshgoftaar, H. Wang, et al. Choosing software
metrics for defect prediction: an investigation on feature selection
techniques . Software Practice & Experience, 41(5):579-606, 2011.

[3] M. Shepperd, D. Bowes, T. Hall. Researcher Bias: The Use of
Machine Learning in Software Defect Prediction. IEEE Transactions
on Software Engineering, 40(6):603-616, 2014.

[4] Q. Song, Z. Jia, M. Shepperd, et al. A general software defect-
proneness prediction framework. Software Engineering, IEEE
Transactions on, 37(3): 356-370, 2011.

[5] X. Yang, K. Tang, X. Yao. A Learning-to-Rank Approach to
Software Defect Prediction. IEEE Transactions on Reliability, 64(1):
234-246, 2015.

[6] T. Menzies, J. Greenwald, A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software
Engineering, 33(1): 2-13, 2007.

[7] S. Lessmann, B. Baesens, C. Mues, et al. Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings. Software Engineering, IEEE
Transactions on, 34(4): 485-496, 2008.

[8] L. Guo, Y. Ma, B. Cukic, et al. Robust prediction of fault-proneness
by random forests Software Reliability Engineering, 2004. ISSRE
2004. 15th International Symposium on IEEE, 417-428, 2004.

[9] H. Lu, B. Cukic, M. Culp. Software defect prediction using semi-
supervised learning with dimension reduction Automated Software
Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. 314-317. IEEE, 2012.

[10] M. Shepperd, Q. Song, Z. Sun, et al. Data Quality: Some Comments
on the NASA Software Defect Datasets. IEEE Transactions on
Software Engineering, 39(9):1208-1215, 2013.

[11] C. E. Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):
3-55, 2001.

[12] J. Xuan, M. Monperrus. Learning to Combine Multiple Ranking
Metrics for Fault Localization. Proceedings of the 30th International
Conference on Software Maintenance and Evolution (ICSME 2014),
Sept. 28-Oct. 3, pp. 191-200, 2014.

[13] http://openscience.us/repo/.
[14] X. Xia, D. Lo, S. McIntosh, et al. Cross-project build co-change

prediction. Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on. 311-320.
IEEE,2015.

[15] A. Panichella, R. Oliveto, A. De Lucia. Cross-project defect
prediction models: L'Union fait la force. Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week-IEEE Conference on. 164-173. IEEE,
2014..

[16] P. He, B. Li, X. Liu, Y. Ma. An empirical study on software defect
prediction with a simplified metric set. Information and Software
Technology, 59: 170-190, 2015.

[17] M. D'Ambros, M. Lanza, R. Robbes. An extensive comparison of bug
prediction approaches. Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 31-41, 2010.

[18] T. M. Khoshgoftaar, K. Gao, A. Napolitano. An empirical study of
feature ranking techniques for software quality prediction.
International Journal of Software Engineering and Knowledge
Engineering, 22(02): 161-183, 2012.

[19] M. GhasemiGol, H. S. Yazdi, R. Monsefi. A new hierarchical
clustering algorithm on fuzzy data (FHCA). International Journal of
Computer and Electrical Engineering, 2(1): 1793-8163, 2010.

[20] K. Gao, T. M. Khoshgoftaar, H. Wang. An empirical investigation of
filter attribute selection techniques for software quality classification.

Information Reuse & Integration, 2009. IRI'09. IEEE International
Conference on. 272-277. IEEE, 2009.

[21] D. N. Reshef, Y. A. Reshef, H. K. Finucane, et al., Detecting Novel
Associations in Large Data Sets, Science, 2011.

[22] D. Reshef, Y. Reshef, M. Mitzenmacher, et al. Equitability analysis
of the maximal information coefficient, with comparisons. arXiv
preprint arXiv:1301.6314, 2013.

[23] W. H. E. Day, H. Edelsbrunner. Efficient algorithms for
agglomerative hierarchical clustering methods. Journal of
Classification, 1(1):7-24, 1984.

[24] Q. Song, J. Ni, G. Wang. A Fast Clustering-Based Feature Subset
Selection Algorithm for High-Dimensional Data. IEEE Transactions
on Knowledge & Data Engineering, 25(1):1-14, 2013.

[25] V. Kumar, J. K. Chhabra, D. Kumar. Impact of distance measures on
the performance of clustering algorithms. Intelligent Computing,
Networking, and Informatics. Springer India, 183-190, 2014.

[26] H. K. Seifoddini. Single linkage versus average linkage clustering in
machine cells formation applications. Computers & Industrial
Engineering, 16(3): 419-426, 1989.

[27] H. Jiang, J. Xuan, Z. Ren. Approximate backbone based multilevel
algorithm for next release problem. Proceedings of the 12th annual
conference on Genetic and evolutionary computation. ACM, 1333-
1340, 2010.

[28] S. Kim, H. Zhang, R. Wu, et al. Dealing with noise in defect
prediction. Software Engineering (ICSE), 2011 33rd International
Conference on. 481-490. IEEE, 2011.

[29] J. Chen, S. Liu, W. Liu, et al. A Two-Stage Data Preprocessing
Approach for Software Defect prediction. Software Security and
Reliability (SERE), 2014 Eighth International Conference on. 20 -
29. IEEE, 2014.

[30] S. Liu, X. Chen, W. Liu, et al. FECAR: A Feature Selection
Framework for Software Defect Prediction. 2014 IEEE 38th Annual
Computer Software and Applications Conference (COMPSAC).
IEEE Computer Society, 426-435, 2014.

[31] H. Liu, J. Sun, L. Liu, et al. Feature selection with dynamic mutual
information. Pattern Recognition, 42(7):1330 1339, 2009.

[32] K. P. Murphy. Machine learning: a probabilistic perspective.
Mathematics Education Library, 58(8):27-71, 2012.

[33] C. Ding, X. He. Cluster merging and splitting in hierarchical
clustering algorithms. Proceedings of the 2002 IEEE International
Conference on Data Mining. IEEE Computer Society, 139, 2002.

[34] C. H. Park. A Feature Selection Method Using Hierarchical
Clustering. Lecture Notes in Computer Science, 1-6, 2013.

[35] D. Ienco, R. Meo. Exploration and Reduction of the Feature Space by
Hierarchical Clustering. SDM, 2008.

[36] A. K. Jain, R. C. Dubes. Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[37] http://cn.mathworks.com/help/stats/hierarchical-clustering.html.
[38] C. D. Manning, P. Raghavan, H. Schütze. Introduction to information

retrieval, 43(3):824-825. Citeseer, 2008.
[39] X. Jin, A. Xu, R. Bie, et al. Machine Learning Techniques and Chi-

Square Feature Selection for Cancer Classification Using SAGE
Gene Expression Profiles . Data Mining for Biomedical Applications,
106-115, 2006.

[40] J.R. Quinlan, C4.5: programs for machine learning. Morgan
Kaufmann Pub. San Mateo, California, 1993.

[41] M. H. Halstead. Elements of Software Science (Operating and
programming systems series). Elsevier Science Inc., 1977.

[42] G. I. Webb. Multiboosting: A technique for combining boosting and
wagging. Machine learning, 40(2): 159-196, 2000.

[43] M. Robnik-Šikonja, I. Kononenko. Theoretical and empirical analysis
of ReliefF and RReliefF. Machine learning, 53(1-2): 23-69, 2003.

[44] T. M. Khoshgoftaar, M. Golawala, J. V. Hulse. An empirical study of
learning from imbalanced data using random forest. Tools with

380

Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International
Conference on. 2: 310-317. IEEE, 2007.

[45] E. Arisholm, L. C. Briand, E. B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate defect
prediction models . Journal of Systems & Software, 83(1):2–17,
2010.

[46] T. K. Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 20(8):832 – 844, 1998.

[47] C. Vens, F. Costa. Random Forest Based Feature Induction Data
Mining (ICDM), 2011 IEEE 11th International Conference on. 744 -
753. IEEE, 2011.

[48] S. Shivaji, E. J. Whitehead, R. Akella, et al. Reducing features to
improve code change-based bug prediction. Software Engineering,
IEEE Transactions on, 39(4): 552-569, 2013.

[49] W. W. Cohen. Fast effective rule induction. Proceedings of the
twelfth international conference on machine learning. 115-123, 1995.

[50] T. Fawcett. An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861–874, 2006.

[51] I. H. Witten, E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Biomedical Engineering Online, 5:51(1),
2005.

[52] S. Shivaji, J. E. J. Whitehead, R. Akella, et al. Reducing features to
improve bug prediction. Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 600-604, 2009.

[53] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, X. Wu. Towards
effective bug triage with software data reduction techniques. IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 1, pp.
264-280, Jan. 2015.

[54] T. J. McCabe. A complexity measure. Software Engineering, IEEE
Transactions on, 308-320, 1976.

[55] M. E. R. Ruiz. Combining machine learning and hierarchical
structures for text categorizatio.The University of Iowa, 2001.

[56] http://www.exploredata.net/.
[57] T. Zimmermann, N. Nagappan. Predicting defects using network

analysis on dependency graphs. Proceedings of the 30th international
conference on Software engineering. 531-540. ACM, 2008.

[58] M. M. T. Thwin, T. S. Quah. Application of neural networks for
software quality prediction using object-oriented metrics. Journal of
systems and software, 76(2): 147-156, 2005.

[59] X. Y. Jing, S. Ying, Z. W. Zhang, et al. Dictionary learning based
software defect prediction. Proceedings of the 36th International
Conference on Software Engineering. 414-423. ACM, 2014.

[60] T. Zimmermann, N. Nagappan, H. Gall, et al. Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process.
Proceedings of the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 91-100. ACM, 2009.

[61] J. Nam, S. J. Pan, S. Kim. Transfer defect learning. Proceedings of
the 2013 International Conference on Software Engineering. IEEE
Press, 382-391, 2013.

[62] A.P. Field. Discovering statistics using SPSS for Windows:
Advanced techniques for the beginner. Discovering Statistics Using
SPSS for Windows: Advanced Techniques for Beginners. Sage
Publications, Inc., 2000.

[63] P. He, B. Li, Y. Ma. Towards Cross-Project Defect Prediction with
Imbalanced Feature Sets. arXiv preprint arXiv:1411.4228, 2014.

[64] W. Liu, S. Liu, Q. Gu, et al. FECS: A Cluster Based Feature
Selection Method for Software Fault Prediction with Noises.
Computer Software and Applications Conference (COMPSAC), 2015
IEEE 39th Annual. 2: 276-281. IEEE, 2015.

[65] B. Turhan, A. Bener. Analysis of Naive Bayes’ assumptions on
software fault data: An empirical study. Data & Knowledge
Engineering, 68(2): 278-290, 2009.

[66] K. Zuva, T. Zuva. Evaluation of Information Retrieval Systems.
International Journal of Computer Science & Information
Technology (IJCSIT), 4(3), 2012.

[67] Y. Zhang, W. Zhang, Y. Xie. Improved heuristic equivalent search
algorithm based on maximal information coefficient for Bayesian
network structure learning. Neurocomputing, 117: 186-195, 2013.

[68] E. Martinez-Gomez, M. T. Richards, D. S. P. Richards. Distance
correlation methods for discovering associations in large
astrophysical databases. The Astrophysical Journal, 781(1): 39, 2014.

[69] H. M. Liu, N. Rao, D. Yang, et al. A novel method for identifying
SNP disease association based on maximal information coefficient.
Genetics and molecular research: GMR, 13(4): 10863, 2014.

[70] C. Lin, T. Miller, D. Dligach, et al. Maximal information coefficient
for feature selection for clinical document classification. ICML
Workshop on Machine Learning for Clinical Data. Edingburgh, UK.
2012.

[71] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
bulletin, 80-83, 1945.

[72] G. Macbeth, E. Razumiejczyk, R. D. Ledesma. Cliff's Delta
Calculator: A non-parametric effect size program for two groups of
observations. Universitas Psychologica, 10(2): 545-555, 2011.

[73] D. Cordes, V. Haughton, J. D. Carew, et al. Hierarchical clustering to
measure connectivity in fMRI resting-state data. Magnetic resonance
imaging, 20(4): 305-317, 2002.

[74] X. Jing, F. Wu, X. Dong, et al. Heterogeneous cross-company defect
prediction by unified metric representation and CCA-based transfer
learning. Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. 496-507. ACM, 2015

381

