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Abstract—Defect prediction aims to estimate software reliabil-
ity via learning from historical defect data. A defect prediction 
method identifies whether a software module is defect-prone or 
not according to metrics that are mined from software pro-
jects. These metric values, also known as features, may involve 
irrelevance and redundancy, which will hurt the performance 
of defect prediction methods. Existing work employs feature 
selection to preprocess defect data to filter out useless features. 
In this paper, we propose a novel feature selection framework, 
MICHAC, short for defect prediction via Maximal Infor-
mation Coefficient with Hierarchical Agglomerative Cluster-
ing. MICHAC consists of two major stages. First, MICHAC 
employs maximal information coefficient to rank candidate 
features to filter out irrelevant ones; second, MICHAC groups 
features with hierarchical agglomerative clustering and selects 
one feature from each resulted group to remove redundant 
features. We evaluate our proposed method on 11 widely-
studied NASA projects and four open-source AEEEM projects 
using three different classifiers with four performance metrics 
(precision, recall, F-measure, and AUC). Comparison with five 
existing methods demonstrates that MICHAC is effective in 
selecting features in defect prediction.   

Keywords—defect prediction; feature selection; maximal 
information coefficient 

I. INTRODUCTION  
 Defect prediction aims to estimate software reliability 

via learning from defect data. Based on the investigation of 
historical metrics [1], [2], defect prediction identifies the 
effect of design and testing process over a number of defects. 
Therefore, defect prediction is often used to help to reasona-
bly allocate limited development and maintenance resources 
[3], [4], [5]. In defect prediction, each software module is 
viewed as a class label and a set of features. The class label 
of a module denotes whether a module is defect-prone or not; 
the set of features is used to build learnable models.  

Many learning models have been proposed for defect 
prediction [58], [65]. The performance of these models is 
still vulnerable to irrelevant and redundant module features 
that undermine the prediction effect. Previous results have 
shown that the performance of predictive models improves 
when irrelevant and redundant features are eliminated from 
the original dataset [9], [48]. It is crucial to apply feature 
selection to defect prediction since feature selection can filter 
out irrelevant and redundant features by evaluating the con-
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tributions of module features. The output of feature selection 
is a subset of the original feature set. This feature subset is 
more effective in distinguishing software modules.  

However, directly applying feature selection is not suita-
ble to defect prediction. Existing work by Chen et al. [29] 
and Liu et al. [30] shows that a combination of feature rank-
ing and clustering can improve the performance of predictive 
models. Such work selects features for defect prediction 
methods via manual setting the number of feature clusters. In 
this paper, our proposed approach is motivated by the feature 
selection method by Chen et al. [29]. In contrast, we enhance 
feature ranking with a recently proposed relevance measure 
and improve the feature clustering framework via automati-
cally determining the number of clusters without manual 
setting. 

In this paper, we propose a novel framework, MICHAC, 
to support feature selection for defect prediction. MICHAC 
is short for defect prediction via Maximal Information Coef-
ficient with Hierarchical Agglomerative Clustering, which 
enhances feature selection for defect prediction via a two-
stage approach. Frist, MICHAC employs Maximal Infor-
mation Coefficient (MIC) [21] to rank candidate features to 
remove irrelevant features; second, MICHAC groups fea-
tures with Hierarchical Agglomerative Clustering (HAC) and 
selects one feature from each resulted group. Technically, 
MIC has the advantage of exploring the hidden relationship 
between two variables and resisting noise [21], [22]; HAC is 
effective to cluster features that share a similar pattern [23]. 
In MICHAC, we determine the optimized number of clusters 
according to the increment of a statistic measure, called in-
consistency coefficient. 

We evaluate our proposed approach, MICMAC, by an-
swering three research questions on performance and gener-
ality. Experiments are conducted on 11 publicly available 
projects in the NASA dataset. Experimental results show that 
MICHAC can effectively select features to improve existing 
defect prediction methods. On most of projects under evalua-
tion, MICMAC performs the best AUC and F-measure val-
ues. We also evaluate the generality of our method on four 
projects in the AEEEM dataset. This experiment shows that 
MICHAC can yield a competitive prediction performance 
against the compared methods in defect prediction in open 
source projects. 

This paper makes the following contributions. 
1. We propose a novel feature selection framework, 

MICHAC, which combines an effective relevance measure 
technique Maximal Information Coefficient (MIC) with a 
clustering technique Hierarchical Agglomerative Clustering 
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(HAC). To the best of our knowledge, this is the first time to 
introduce MIC as the relevance metric into the field of defect 
prediction. The output of MICHAC is a subset of the original 
feature set, which can be applied to any defect prediction 
method, such as Naïve Bayes and Random Forest. 

2. We utilize the inconsistency coefficient as a criterion 
to select the optimized number of clusters when clustering 
features of software modules. Comparing with existing work 
[29], [30], we do not need to manually define the number of 
clusters. 

3. We experimentally evaluate MICHAC and five other 
existing feature selection methods for defect prediction on 15 
software projects. 

II. BACKGROUND 
In this section, we describe the background of our work 

and two key techniques used in our proposed method. 

A. Defect Prediction via Feature Selection 
Defect prediction detects defect-prone modules based on 

historical defect data. Most of existing work can be unified 
as a binary-class machine learning problem, i.e., predicting 
whether a module is defect-prone or not by learning from 
known modules. A predictive model can be learnt based on 
a set of extracted features of software modules. A feature of 
modules could be metrics of software quality, such as the 
count of lines of source code. In defect prediction, an origi-
nal feature set may hurt the performance of predictive mod-
els since many learning algorithms (e.g., Naïve Bayes [6], [7] 
or Random Forrest [8], [9]) are sensitive to irrelevant or 
redundant features. 

Feature selection is a family of data preprocessing tech-
niques, which identifies a subset of representative features to 
replace the original set. Classic feature selection techniques, 
such as information gain and chi-square statistics [2], [53], 
are employed to investigate the features of defect prediction. 
In general, a feature selection algorithm ranks features ac-
cording to their relevance scores. The larger a score is, the 
better the attribute is to distinguish between potential classes 
[12]. Then the top-ranked features are selected as a subset of 
representative features for predicting defects. 

Our work is motivated by the success of feature selection 
in defect prediction. Comparing with directly applying fea-
ture selection to defect prediction, we enhance feature selec-
tion in two directions. First, we employ a recently proposed 
relevance measure, i.e., maximal information coefficient, to 
improve the ability of selecting relevant features; second, we 
use hierarchical agglomerative clustering to remove redun-
dant features. We describe two key techniques in our work as 
follows. 

B. Maximal Information Coefficient  
Maximal Information Coefficient (MIC) was developed 

as a robust measure of relevance by Reshef et al. in 2011 
[21]. MIC has attracted much interest from academia be-
cause of its effectiveness as an indicator of measuring the 
correlation between two variables [67], [68], [69], [70]. In 
our work, we use MIC to detect the correlation between each 
module feature and the class label (i.e., defect-prone or not). 

MIC is based on the theory of mutual information; hence 
we briefly introduce the mutual information before introduc-
ing MIC. Let � be a random variable with discrete values. 
The entropy of X [11] is defined as 
 ���� � �	 
��� ��
 
������   (1) 

where p(x) is the probability density function of �. Then the 
joint entropy ���� �� of two random variables �  and �  is 
defined as 
 ���� �� � �	 	 
��� �� ��
 
��� ��������   (2) 

To quantify the reduction in uncertainty about variable � 
after observing variable��, or by symmetry, the reduction in 
uncertainty about �  after observing � , the mutual infor-
mation is introduced as follows. 
 ���� �� � ���� � ���� � ���� �� (3) 

i.e., ���� �� � 	 	 
��� ����
 ������
��������������   (4) 

Mutual information is a measure of independence. Based 
on the above formula, the value of ���� �� = 0 if variables � 
and � are independent; otherwise, the value is greater than 
zero if they are dependent. In this case, the greater the value 
is, the more relevant the two variables are [31], [32]. 

MIC is designed based on an ideal status: if there exists 
a correlation between two variables �  and � , then a grid 
could be drawn on the scatter diagram of the two variables 
to make most of the data points fall into several cells of the 
grid. By searching for the optimal grid, MIC can calculate 
correlation of two variables by counting the cells. 

Given a finite dataset � , let �  and �  be two variables 
with a sample size �; in our work, � and � denote a feature 
and the class label with � software modules. Suppose that 
the � value and � value of the two variables are divided into � bins and � bins, respectively, allowing empty bins, we call 
this partition as an �-by-� grid. Let ��� denote the distribu-
tion of the points in � on the cells of a grid �. For each cell 
of �, the probability mass of the cell is counted by dividing 
the proportion of points falling into the cell with the total 
points. Then for different �-by-� partitions, we can obtain 
different distributions of ���. 

For a specific �-by-� partition, the maximum mutual in-
formation of ��� is defined as  

 � ��� �� �� � !"# ������  (5) 

where ������ denotes the mutual information of ��� . That 
is, � ��� �� �� is the maximum value of ������ for all cells 
of the grid. 

For different �-by-� partitions, we can obtain different 
values of � ��� �� �� . Then, under different � -by-�  parti-
tions, a characteristic matrix $��� can be constructed by 
choosing the � ��� �� �� of each �-by-� partition as 
 $������ � % �&�����

'()��*+,�-���.�  
(6) 

where normalizing by ��
��/0��-�� �.� can make the entries 
of the matrix range from zero to one and guarantee that all 

371



 

noiseless functions get perfect mutual information scores 
[21]. Furthermore, the MIC value can be defined as 
 1234����5 � !"#��67�8�-$������.  (7) 

where 9��� is the upper bound of the grid size. In this paper, 
we follow [21] to set 9��� � �:;< as the default value. In 
the context of defect prediction, given the class label �, we 
calculate the MIC value for each feature �. We rank all orig-
inal features according to their MIC values and select a sub-
set of these features. This will be further explained in Section 
III-B. 

C. Hierarchical Agglomerative Clustering 
We employ a Hierarchical Agglomerative Clustering 

(HAC) algorithm to divide features into groups and thus to 
reduce redundant features. In Section III-C, we will later 
show how to group features via HAC based on the feature 
values across software modules. Note that our goal is to 
group features rather than modules and features are charac-
terized via their numeric values in software modules. 

The clustering process of HAC is described below. First, 
the algorithm treats each feature as a cluster and initializes 
the distance of every two clusters. Then HAC merges the 
nearest two clusters into a new cluster and calculates the 
distance between the new cluster and other clusters. The 
merging process repeats until a pre-defined criteria reaches 
or all features belong to one group [33], [34]. HAC can form 
a feature dendrogram of the resulting cluster hierarchy, 
which serves as a valuable tool in visualization [35]. 

The distance between two features can be defined by the 
similarity of these features, such as the cosine similarity and 
the Pearson correlation coefficient. According to different 
distance definitions, there are several kinds of commonly 
used linkage methods for calculating the distance between 
clusters, such as the single linkage method, the complete 
linkage method, and the average linkage method. More de-
tailed description can be found in [36]. 

In this paper, we determine the final number of clusters 
according to a statistic, called inconsistency coefficient dur-
ing clustering (in Section III-D). Based on this statistic, our 
method avoids pointing out a specific number of clusters, 
which was manually decided in existing work [29], [30]. 

III. OUR PROPOSED APPROACH, MICHAC 
In this section, we first introduce the framework of our 

proposed method; then we present the detailed steps in the 
stages of feature ranking and feature clustering; finally, we 
illustrate how to determine the number of clusters in the 
stage of feature clustering. 

A. Overview 
We propose MICHAC, short for defect prediction via 

Maximal Information Coefficient (MIC) with Hierarchical 
Agglomerative Clustering (HAC). In MICHAC, we provide 
a novel feature selection framework, which combines feature 
ranking with feature clustering for defect prediction. 
MICHAC selects an optimized subset of module features. 
With the support of MICHAC, existing defect prediction 

methods, such as Naïve Bayes, can benefit from a high-
quality training dataset that replaces the original one. 

Fig 1 illustrates the overall structure of MICHAC. This 
structure consists of two major stages: feature ranking and 
feature clustering. In the stage of feature ranking, we meas-
ure the relevance of features with respect to the class label 
via a new feature ranking technique based on MIC (in Sec-
tion II-B); this stage filters out module features that have a 
low correlation with the class label. In the stage of feature 
clustering, we cluster features into groups based on HAC (in 
Section II-C); this stage eliminates redundant features via 
selecting one feature per cluster. As a result, we construct an 
optimized subset of module features, which is used to replace 
the original feature set in defect prediction. 

B. Feature Ranking Stage Based on MIC 
In the stage of feature ranking, we mainly conduct the 

relevance analysis between each feature with respect to the 
class label. That is, features that can distinguish whether a 
module is defect-prone or not are selected for the next stage 
(in Section III-C). We rank features independently, without 
considering any learning algorithm. 

The input of feature ranking is a set of defect data, 
which can be used to build a predictive model in defect pre-
diction. As shown in Fig. 1, feature ranking consists of three 
major steps. In Step �, we preprocess defect data, such as 
removing features with only one value and non-numeric 
features. In addition, we convert the class label of modules 
into binary label. Specifically, we label modules with one or 
more defects as 1, otherwise as 0. In Step �, we calculate 
the MIC values between each feature � and the class label � 
based on Equation 7 in Section II-B. In Step �, we sort all 
features based on their MIC values in descending order and 

 

Figure 1.  Overview of our proposed approach, MICHAC. 
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select the top p features which have the highest correlation 
with respect to the class label. These selected features form 
the initial subset of features for the next stage. The value of 
 is defined as 
 � =/> ��
/?, where / is the number of 
the original features. The number of top features is set ac-
cording to Song et al. [24]. 

C. Feature Clustering Stage Based on HAC 
The main goal of the stage of feature clustering is to 

eliminate redundant features that have similar effect with 
other features in distinguishing modules with different la-
bels. Note that in contrast to traditional clustering, our goal 
is to group features rather than instances. 

Feature clustering consists of three major steps. In Step 
�, we use the HAC algorithm (in Section II-C) to cluster 
the features that are selected as the initial subset in the pre-
vious stage. HAC is an iterative process, which merges cur-
rent clusters continuously. It is possible that a current cluster 
only contains one feature, e.g., each feature is treated as one 
cluster at the beginning of the iteration. In HAC, features 
are merged into clusters according to the distances between 
current clusters. We employ the average linkage method to 
define the distance of two current clusters [26]. The average 
linkage between two clusters is defined as the average of the 
distance between any feature pair between two clusters. 
Suppose that @A and @B are two current clusters during the 
clustering process. The distance of the two clusters �A�B can 
be calculated by the following formula: 
 �A�B � C

DEDF
	 GH�I�J�KE��L�KF   (8) 

where /Aand /B are the number of features inside clusters 
@A  and @B  and GH�I  is the distance between two features �H 
and �I. We define the distance GH�I of two features �H and �I 
with Pearson correlation coefficient MH�I as follows. 

 GH�I � N � MH�I  (9) 

For two given features, Pearson correlation coefficient 
measures the relevance between numeric values of both 
features in instances [25]. Given two module features �H and 
�I, the observation vectors of features are symbolized as n-
dimension vectors, i.e., O�HC� �HP� Q � �H8R  and O�IC� �IP� Q � �I8R, respectively, where values �HS and �IS de-
note the numeric values of the features �H and �I in the Tth 
instance (T � N�U� Q � �) and � is the number of instances in 
the dataset. As mentioned in Section III-B, we select top 
 
features as the initial subset of features. Then the correlation 
coefficient MH�I  for features �H  and �I  is calculated by the 
following formula.  
 MHI � 	 ��JVW�XJ���LVW�XL�YVZ[

\	 ��JVW�XJ�]YVZ[ 	 4�LVW�XL5]YVZ[
  (10) 

where �XH � C
8 	 �HS8S^C and��XI � C

8 	 �IS8S^C (0 � N�U� Q � 
, _ �
N�U� Q � 
, and 
 is the number of current features after the stage 
of feature ranking in Section III-B). In this step, we record all 
information during clustering, including the orders of merg-
ing and distances between clusters [37]. 

Step � determines when to stop the process of cluster-
ing according to the recorded information during clustering 
all features. In our work, we choose the number of final 
clusters by maximizing the increment of inconsistency coef-
ficient during the clustering process of HAC. 

Inconsistency Coefficient (IC) is used to quantitatively 
express the relatively consistent of one link [73]. A link de-
notes an action of merging two current clusters. The value 
of inconsistency coefficient can be calculated by comparing 
the distance of the current link and the average distance of 
its neighbors. The neighbors of one specific link denote all 
children links that lead to this link as well as the link itself. 
For each link, we count its IC value of a link `abcc to meas-
ure the change of clustering as follows. 

23�`Mdee� � �`Mdee � "f
��`YgJhiFjk�
lmn��`YgJhiFjk�  (11) 

where lmn��oYgJhiFjk� denotes the standard deviation of all 
links in its neighbors. We define the increment of IC values 
between two links as poqrkk�oskgt� 23�`abcc� � 23�`�cuv� , 
where `abcc and `�cuv denote a current link and its previous 
link, respectively. Then we find the link with the maximal 
increment value and stop the process of HAC clustering 
before this link [19], [37]. We will illustrate the calculation 
of inconsistency coefficient in Section III-D. 

In Step �, for each cluster, we select the feature with the 
maximal MIC value as the representative feature. Then w 
features are finally selected from w clusters. These features 
form the final subset of features, which replaces the original 
training set and serves as the input of defect prediction 
methods. 

D. Inconsistency Coefficient in HAC 
We use a simple clustering dendrogram to visualize the 

concept above. Fig.2 shows a clustering dendrogram includ-
ing three module features xC, xP, and xy. 

At first, features xC, xP, and xy are treated as three initial 
clusters. As shown in Fig. 2, first, xC and xP are linked to a 
cluster, labeled xz ; then xz  and xy  are linked to a cluster, 
labeled x{. The link `C�P between xC and xP and the link `z�y 
between xz and xy are shown in the dendrogram. According 
to Equation 9 and Equation 10, the distance between xCand 
xP is �N�U � GN�U � N � MN�U, where MN�U denotes the Pearson 
correlation coefficient of xCand xP, GN�U denotes the distance 
of two features xCand xP , and �N�U  denotes the distance of 
two clusters (initialized based on xC and xP ). Meanwhile, 
according to Equation 8, the distance between xz and xy is 
the average distance between any feature pair between clus-
ter xz and cluster xy, namely �|�} � �GN�} � GU�}�>U  

The inconsistency coefficient value of the link `z�y (at 
the depth of two in the dendrogram) can be calculated as 
follows,   

23�`z�y� � &~��W��[�]��~��
]

���;   (12) 

where lmn; denotes the standard deviation of �N�U and �|�}. 
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We determine the final number of clusters according to 
the increment of inconsistency coefficient. The detail of 
selecting the number of final clusters is as follows. In the 
process of merging two clusters, i.e., building a link, a 
higher increment of inconsistency coefficient indicates that 
the link of merging previous clusters will lead to a better 
clustering result. Then we determine the optimized number w of clusters according to the maximal increment of incon-
sistency coefficient. Specifically, for all the links, if the in-
crement of the inconsistency coefficient of one link is the 
maximal, we take the cluster number of the pervious one of 
this link as the final cluster number. 

IV. EXPERIMENTAL SETUP 

A. Projects in the NASA Dataset 
Our experiments are mainly conducted on 11 widely-

studied projects in the NASA dataset [13]. The NASA da-
taset was donated by Menzies and was cleaned by Shepperd 
et al. [10]. Software modules in these projects are character-
ized with static code metrics, such as LOC counts, Halstead 
complexity metrics, McCabe complexity metrics. These 
metrics closely relate to software quality. For instance, LOC 
counts measures the number of code lines; the Halstead 
complexity measure the complexity of the program accord-
ing to the total number of operators and operands in the pro-
gram [41]; McCabe Complexity is based on the analysis 
towards program flow chart and identifies the complexity by 
calculating the number of direct circles of the strongly 
connected flow chart [54]. Table I shows the details of the 
datasets, where # features, # modules, # defective modules 
and % defective modules denote the number of features, the 
number of modules, and the number of defective modules, 
and the percentage of defective modules, respectively.  

Table II lists the maximal increment of inconsistency 
coefficient and the corresponding number of features select-
ed by our MICHAC method, as mentioned in Section III-D. 
We find that the maximal increment varies among different 
projects. The average number and percentage of selected 
features are 7.5 and 24.6%, respectively. 

B. Research Questions 
Our evaluation answers three Research Questions (RQs), 

including both performance and generality. 
RQ1. Does our method MICHAC, perform better than 

state-of-the-art feature selection methods on defect predic-
tion?  

This question validates the important criterion of defect 
prediction: the performance improvement in terms of defec-
tive precision, recall, F-measure and AUC (as defined in 
Section IV-D). To answer this question, we compare our 
method against three classic feature selection methods (Chi-
Square, Gain Ratio and ReliefF) and two recently proposed 
feature selection methods (TC [29] and FECAR [30]). 
Methods in comparison will be described in Section IV-C. 

RQ2. Is the feature clustering strategy in MICHAC ef-
fective, comparing with the same method without feature 
clustering?  

MICHAC mainly consists of two stages, feature ranking 
stage and feature clustering stage. Feature ranking, derived 
from the family of feature selection algorithms, filters out 
irrelevant features while feature clustering is added to re-
move redundant features. To investigate the effectiveness of 
feature clustering, we compare MICHAC with the same 
algorithm without feature clustering strategy, called MIC for 
short. 

RQ3. Can our method be generalized to other datasets?  
The NASA dataset in Section IV-A is widely-studied in 

defect prediction. Our evaluation in this paper is also con-
ducted on this dataset. However, we tend to investigate 
whether our proposed method can be applied to other da-
tasets. We employ another popular dataset, AEEEM, to 
evaluate the generality of our work. 

C. Methods in Comparison 
We compare our method with three classic feature 

selection methods in defect prediction [2], [18]: Chi-Square, 
Gain Ratio and ReliefF. We also compare our work with 
two existing feature selection methods, which are originally 
designed for defect prediction: TC [29] and FECAR [30]. 

These five methods are briefly described below. In the 
domain of software defect prediction, the Chi-Square (CS) 
statistic measures the independence between the feature x 
and the class label M [38], [39]. Gain Ratio (GR) is an up-
dated version of the information gain by penalizing multi-
valued attributes to counter the bias [40]. ReliefF (ReF) is 

 
Figure 2.  A simple clustering dendrogram with three features. 

TABLE I. PROJECTS IN THE NASA DATASET USED IN OUR EXPERIMENT

Project # features # modules # defective modules% defective modules

CM1 37 344 42 12.2% 

JM1 21 9593 1759 18.3% 

KC1 21 2096 325 15.5% 

KC2 21 522 107 20.5% 

MC1 38 9277 68 0.7% 

MC2 39 127 44 34.6% 

MW1 37 253 27 10.7% 

PC1 37 759 61 8.0% 

PC3 37 1125 140 12.4% 

PC4 37 1399 178 12.7% 

PC5 38 1711 471 27.5% 
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an extension of the Relief method that can solve the multi-
class learning problem [43]. Note that these three methods 
are different representative of feature selection methods. 
The CS, GR, ReF are based on statistics, entropy, and in-
stances, respectively. The number of features in these meth-
ods is set to ����P/��where /  is the number of original 
features. This setting is suggested by Khoshgoftaar et al. [44] 
and Gao et al. [2]. Their work shows that various classifiers 
in defect prediction are appropriate to this setting. 

TC is a feature selection method combining feature 
ranking and feature clustering proposed by Chen et al. [29]. 
This method uses symmetrical uncertainty to removing ir-
relevant features and then employs a threshold-based clus-
tering to eliminate redundant features. Another similar 
framework is FECAR, proposed by Liu et al. [30]. This 
framework first applies the k-medoids clustering to group 
the features, and then selects a certain number of features 
per cluster to form the final feature subset. There are three 
variants of FECAR; we select the one using information 
gain, which performs best among three variants. Both of 
these two methods require manually setting the number of 
clusters. In our evaluation, we follow the original work to 
set the number of clusters. In both papers, the final feature 
numbers are set to ����P/�, which is derived from Khosh-
goftaar et al. [44] and Gao et al. [2]. 

D. Evaluation Metrics  
In this paper, we used F-measure and AUC as main met-

rics to compare the performance of classifiers. 
1) F-measure: There are four possible outcomes from a 

binary predictive model on a test set: classifying a defective 
module as defective (����), classifying a defective module 
as defect-free (����), classifying a defect-free module as 
defect-free (����), and classifying a defect-free module as 
defective ( ���� ) [28]. Based on the possible output, 
defective precision, defective recall, defective F-measure 
are defined as follows: 

defective precision, ��G� � 8���
8����8���

 

defective recall, ��G� � 8���
8����8���

 

defective F-measure, ��G� � P����������
���������  

Defective F-measure is the harmonic mean of defective 
precision and defective recall. We highlight this evaluation 
metric in our analysis of classifier performance in this paper. 
In general, the greater the F-measure is, the better the pre-
diction performance of the classifier is. 

2) AUC: AUC is an abbreviation of Area Under the ROC 
Curve, which is widely used in defect prediction [7], [14], 
[15]. An ROC is a curve plotted on a two dimensional plane 
with the true positive rate as y-axis and the false positive 
rate as x-axis, so this curve is used to visualize the 
performance of binary classifiers. The curve of ROC 
illustrates the trade-off between true positive and false 
positive [50], [51]. This curve is used to evaluate the 
different classifier performance; meanwhile, this curve can 
be used to compare the influence of different feature sets 
towards a classifier. Nevertheless, since a curve like ROC 
cannot quantitatively describe the classifier performance, it 
is common to calculate the relative area under the curve (so-
called AUC) as a single scalar value [66]. In defect 
prediction, AUC is regarded as a performance metric of 
various classifiers over different software projects [7]. In 
general, a higher AUC value indicates that the classifier 
performance is better. 

In experiments, we performed 10-fold cross validation 
when training classifiers on the selected features throughout 
this paper, to avoid any potential problem of overfitting 
particular training and test sets within a specific project. In 
10-fold cross validation, a dataset is divided into 10 folds at 
random. Nine of the ten folds take turns to be used as the 
training set while the other fold is used as the test set. The 
training data are used to build a classifier; then the built 
classifier is evaluated on the test data. The final result of 
performance evaluation is the average of the 10 results. 

E. Defect Prediction Models 
In order to compare the performance of feature selection 

methods, we employ three representative classifiers in de-
fect prediction, Naive Bayes (NB) [45], Random Forest (RF) 
[46], and Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER) [49]. The reason we choose these clas-
sifiers is that these classifiers fall into three different fami-
lies of learning methods. NB is a probabilistic classifier [32]; 
RF is a decision-tree classifier [47]; and RIPPER is a rule-
based classifier [49], [55].  

In this paper, experiments were conducted on a 
workstation with an Intel Core i7-4790 CPU with 3.60 GHz. 
We implemented feature selection methods in Java with the 
Weka package and used the classifiers inside Weka with the 
default parameter settings [51]. We calculate MIC values 
via the MINE toolkit [56] and implement MICHAC in 
Matlab 7.0. 

V. EXPERIMENTAL RESULTS 
We present the experimental results to answer our three 

research questions on performance and generality in this 
section. 

TABLE II.  NUMBER OF SELECTED FEATURES BY MAXIMIZING THE INCREMENT OF INCONSISTENCY COEFFICIENT IN MICHAC ON 11 PROJECTS

Project CM1 JM1 KC1 KC2 MC1 MC2 MW1 PC1 PC3 PC4 PC5 AVG 

Maximal increment 2.762 1.825 1.978 2.134 2.345 2.913 1.788 2.672 2.602 1.966 2.429 2.310 

# Selected feature 8 8 9 6 9 5 5 9 8 12 4 7.5 

% Selected feature 21.1 36.4 40.9 37.5 23.1 12.5 13.2 23.7 21.1 31.6 10.3 24.6 
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A. RQ1, Does our method MICHAC, perform better than state-of-
the-art feature selection methods on defect prediction? 
As mentioned in Sections IV-C, we compare our method 

MICHAC with three widely-studied feature selection meth-
ods (CS, GR, and ReF) and two recently-proposed methods 
in defect prediction (TC and FECAR). 

Table III records the average defective precision, recall 
and F-measure of all 11 NASA projects with five different 
feature selection methods on three classifiers, NB, RF and 
RIPPER. The column “Full” denotes the training set with-
out involving any feature selection method; P, R, and F de-
note the defective precision, recall, and F-measure, respec-
tively; W/D/L, short for Win/Draw/Loss, presents the num-
ber of projects, on which MICHAC performs better than, 
the same as, or worse than another method, in terms of F-
measure [42], [64]. 

Table III shows that on all three classifiers, MICHAC 
performs better F-measure values than all the other methods. 
Besides MICHAC, FECAR performs well. For NB classifi-
er, MICHAC achieves the best average F-measure value, 
but fails in the best precision or recall. Regarding the aver-
age precision, MICHAC is inferior to the CS, GR and 
FECAR; regarding the average recall, MICHAC is inferior 
to Full and ReF. For RF classifier, MICHAC can achieve 
the best precision and F-measure values. For RIPPER clas-
sifier, MICHAC can achieve the best values in terms of all 
the three metrics, comparing with all other methods. Among 
all feature selection methods in our experiment, RF classifi-
er with MICHAC reaches the best F-measure as well as the 
best precision. 

The Win/Draw/Loss values shows that, on three classifi-
ers, MICHAC outperforms others on over half of projects in 
terms of F-measure, except the Full method on RF classifier, 
and the CS and FECAR methods on RIPPER classifier. 

Fig. 3 shows the box-plots of F-measure values, with six 
methods for three classifiers on 11 projects. For the NB 
classifier, the median value by MICHAC is higher than that 
by GR, ReF, and TC, while is very similar with that by CS 
and FECAR. In addition, the maximum by MICHAC is 
much higher than that by other methods except ReF. For RF 
classifier, the median value by MICHAC is much higher 

than that by all other methods, and the maximum by 
MICHAC is much higher than that by other methods except 
FECAR. For RIPPER classifier, the median value by 
MICHAC is much higher than that by ReF and TC, while is 
a litter lower than that by CS. In addition, the maximum by 
MICHAC is much higher than that by all other methods 
except TC.  

We perform the Wilcoxon signed-rank test [71] to ana-
lyze whether the performance values of MICHAC is statis-
tically significant different with those of the compared 
methods on three classifiers over all projects. The Wilcoxon 
signed-rank test is a non-parameter method of statistically 
significant test. For the performance values of two methods 
compared, the null hypothesis is that there exists no signifi-
cant difference between the two methods. If the p-value that 
results from Wilcoxon test is less than 0.05, the null hy-
pothesis is rejected. That is, the difference between the two 
methods is identified as statistically significant. The signifi-
cant test is implemented in IBM SPSS Statistics [62]. In 
additional, we compute the effect size, Cliff’s Delta (d) [72], 
to quantify the amount of difference between two methods. 
A positive d indicates that the performance of the prevision 
method has a greater effect than that of the latter method 
[16], [63]. For the sake of space limitation, in this paper we 
only list the detailed p-values and d-values in term of AUC 
for the NASA dataset since AUC is widely used as a per-
formance evaluation metric in defect prediction [4], [7], 
[48]. 

Tables IV, V, and VI present the detailed AUC values of 
each project on three classifiers with the p-values and d-
values. From these tables, we can observe that MICHAC 
can achieve the best AUC values on NB classifier and 
RIPPER classifier, but a little weaker than the Full method 
on RF classifier. The Full method and MICHAC in Table V 
shows that there exists a threat that feature selection hurts 
the performance for a specific defect prediction method. 
The Win/Draw/Loss records also indicate that MICHAC 
wins other methods on most projects on three classifiers in 
term of AUC metric. An exception is the Full method on RF 
classifier, where MICHAC wins and losses on 4 and 7 out 

TABLE III.  AVERAGE PERFORMANCE OF 11 NASA PROJECTS WITH  
THREE CLASSIFIERS ON PRECISION, RECALL, AND F-MEASURE 

Model Metric Full MICHAC CS GR ReF TC FECAR

NB 

P 0.407  0.427  0.440  0.454  0.350  0.410 0.442 
R 0.429  0.397  0.332  0.366  0.424  0.342 0.376 
F 0.350  0.373  0.359  0.360  0.355  0.346 0.367 

W/D/L 7/1/3 8/1/2 7/0/4 6/0/5 6/1/4 6/0/5 

RF 

P 0.540  0.560  0.488  0.498  0.468  0.526 0.501 
R 0.288  0.311  0.302  0.311  0.258  0.287 0.321 
F 0.372  0.392  0.366  0.377  0.326  0.367 0.385 

W/D/L 4/1/7 8/1/2 8/0/3 9/0/2 7/0/4 7/0/4 

RIPPER

P 0.488  0.550  0.535  0.536  0.423  0.498 0.530 
R 0.268  0.280  0.266  0.255  0.171  0.237 0.267 
F 0.333  0.351  0.345  0.334  0.230  0.309 0.344 

W/D/L 7/0/4 4/0/7 7/0/4 9/0/2 8/0/3 5/0/6 
 

 

Figure 3.  Box-plots for F-measure on 11 NASA projects with three 
classifiers. 
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of 11 projects, respectively. Although only nearly half of p-

values are lower than 0.05, the d-values indicate that in al-
most all cases, MICHAC have a greater effect than other 
methods, except for the Full method on RF classifier (-
0.074) and FECAR method on RIPPER classifier (-0.025). 

To conclude the above observation, our method can 
yield better prediction results than the compared methods of 
feature selection in defect prediction. 

B. RQ2, Is the feature clustering strategy in MICHAC effective, 
comparing with the same method without feature clustering? 
As mentioned in Section III, our proposed method, 

MICHAC, can be viewed as a combination of two stages, 
feature ranking and feature clustering. Comparing with gen-
eral feature selection, such as CS or GR, the stage of feature 
clustering in MICHAC can introduce further refinement of 
the subset of features. We compare MICHAC with the 
method only used MIC to illustrate the influence of redun-
dant features in defect prediction. 

Table VII shows the average defective precision, recall, 
F-measure, and AUC values of 11 NASA projects on three 
classifiers as well as the p-values and d-values with respect 
to AUC. We can observe that all the four metrics of 
MICHAC are better than those of MIC on all three classifi-
ers. The Win/Draw/Loss records show that MICHAC wins 
MIC as well, especially on NB classifier; MICHAC wins 
MIC on all projects in terms of F-measure and AUC. The p-
values indicate that there exists significant difference be-
tween the performance of MICHAC method and that of 
MIC method on NB classifier and RF classifier. The non-
negative d-values indicate that effect size of MICHAC 
method is greater than that of MIC method on NB classifier 
and RF classifier. 

Fig. 4 shows the box-plots of F-measure and AUC val-
ues, for MICHAC and MIC, with three classifiers on 11 
projects. The median values of both metrics of MICHAC 
are higher than those of MIC, except on RIPPER classifier. 
Meanwhile, for F-measure, the maximum by MICHAC is 
higher than that by MIC method on NB classifier and RF 
classifier. For AUC, the maximum by MICHAC is higher 
than that by MIC on NB classifier and RIPPER classifier 
while is a litter lower on RIPPER classifier. Moreover, the 
minimum by MICHAC is higher than that by MIC for two 
metrics on NB classifier and RF classifier. 

Experimental results show that MICHAC outperforms 
MIC. The reason is that HAC keeps the features that can 

TABLE IV.  AUC VALUES ON 11 NASA PROJECTS USING NAÏVE BAYES 
WITH THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D) 

Project Full MICHAC CS GR RF TC FECAR 
CM1 0.694 0.725 0.729 0.75 0.752 0.72 0.75 
JM1 0.678 0.642 0.629 0.629 0.624 0.682 0.636 
KC1 0.791 0.791 0.783 0.774 0.782 0.798 0.78 
KC2 0.832 0.836 0.816 0.817 0.827 0.833 0.825 
MC1 0.892 0.917 0.768 0.812 0.845 0.87 0.883 
MC2 0.717 0.722 0.637 0.637 0.627 0.666 0.63 
MW1 0.728 0.774 0.714 0.714 0.737 0.736 0.735 
PC1 0.768 0.788 0.663 0.701 0.673 0.795 0.777 
PC3 0.743 0.785 0.783 0.778 0.784 0.735 0.784 
PC4 0.825 0.837 0.823 0.835 0.823 0.807 0.823 
PC5 0.69 0.66 0.651 0.617 0.64 0.708 0.624 
AVG 0.760  0.771  0.727  0.733  0.738  0.759 0.750  

W/D/L 8/1/2 10/0/1 10/0/1 10/0/1 7/0/4 10/0/1 
p-value 0.169 0.006 0.016 0.021 0.374 0.021 

d 0.116 0.355 0.314 0.240 0.041 0.190 

TABLE V.  AUC VALUES ON 11 NASA PROJECTS USING RANDOM 
FORREST WITH THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D) 

Project Full MICHAC CS GR RF TC FECAR 
CM1 0.782 0.795 0.732 0.728 0.75 0.812 0.728 
JM1 0.76 0.742 0.721 0.721 0.733 0.692 0.729 
KC1 0.83 0.802 0.793 0.744 0.789 0.796 0.793 
KC2 0.825 0.812 0.782 0.808 0.798 0.81 0.795 
MC1 0.923 0.93 0.879 0.918 0.916 0.929 0.937 
MC2 0.682 0.658 0.588 0.588 0.575 0.691 0.573 
MW1 0.716 0.737 0.696 0.696 0.641 0.719 0.754 
PC1 0.844 0.858 0.839 0.854 0.844 0.84 0.804 
PC3 0.864 0.848 0.835 0.844 0.85 0.822 0.849 
PC4 0.944 0.942 0.887 0.916 0.887 0.845 0.914 
PC5 0.8 0.754 0.759 0.749 0.759 0.777 0.755 
AVG 0.815  0.807  0.774  0.779  0.777  0.794 0.785  

W/D/L 4/0/7 10/0/1 11/0/0 9/0/2 8/0/3 7/0/4 
p-value 0.197 0.004 0.003 0.008 0.248 0.068 

d -0.074 0.223 0.207 0.174 0.099 0.157 

TABLE VI.  AUC VALUES ON 11 NASA PROJECTS USING RIPPER WITH 
THE WILCOXON TEST (P-VALUE) AND CLIFF’S DELTA (D) 

Project Full MICHAC CS GR RF TC FECAR 
CM1 0.516 0.541 0.542 0.513 0.494 0.51 0.55 
JM1 0.553 0.563 0.56 0.554 0.541 0.54 0.545 
KC1 0.578 0.587 0.59 0.582 0.588 0.599 0.594 
KC2 0.698 0.749 0.722 0.641 0.711 0.727 0.71 
MC1 0.626 0.619 0.614 0.632 0.623 0.614 0.612 
MC2 0.576 0.584 0.573 0.582 0.595 0.601 0.582 
MW1 0.633 0.602 0.682 0.682 0.581 0.63 0.657 
PC1 0.581 0.558 0.569 0.578 0.5 0.554 0.565 
PC3 0.538 0.574 0.527 0.551 0.542 0.539 0.561 
PC4 0.73 0.761 0.689 0.689 0.528 0.6 0.694 
PC5 0.623 0.591 0.615 0.61 0.54 0.628 0.623 
AVG 0.605  0.612  0.608  0.601  0.568  0.595 0.608  

W/D/L 7/0/4 6/0/5 7/0/4 8/0/3 7/0/4 6/0/5 
p-value 0.35 0.593 0.477 0.016 0.424 0.722 

d 0.041 0.041 0.041 0.397 0.058 -0.025 

TABLE VII. COMPARISON BETWEEN MICHAC AND MIC ON 11 NASA 
PROJECTS 

Model NB RF RIPPER 
Metric MICHAC MIC MICHAC MIC MICHAC MIC 

P 0.427  0.405 0.560  0.539  0.550  0.544 
R 0.397  0.347 0.311  0.310  0.280  0.270 
F 0.373  0.309 0.392  0.388  0.351  0.347 

W/D/L 11/0/0 7/0/4 6/0/5 

AUC 0.771  0.715 0.807  0.780  0.612  0.608 
W/D/L 11/0/0 9/0/2 5/1/5 

p-value 0.003 0.021 0.878 

d 0.438 0.165 -0.008 
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distinguish the class label. In details, we first remove irrele-
vant features, which have little beneficial effect on defect 
prediction. Then we employ a HAC to group features that 
share a similar pattern into a cluster and select one feature 
with the highest MIC value from each cluster to construct 
the final features subset. Thus, all the selected features can 
almost make a contribution to identify the class label. 

To sum up, MICHAC seeks a better feature subset that 
are the most useful for defect prediction. The results con-
firm that redundant features can indeed hurt the prediction 
performance. 

C. RQ3, Can our method be generalized to other datasets? 
To further investigate the generality of our MICHAC on 

other software projects, we apply our method to four soft-
ware projects in the AEEEM dataset. This dataset was col-
lected by D'Ambros et al [17], aiming to perform defect 
prediction at the granularity of class level. Features in this 
dataset include the change metrics, source code metrics, 
entropy of source code metrics, churn of source code met-
rics, etc. Table VIII shows the details of these four projects. 

Table IX presents the result comparison between 
MICHAC and five feature selection methods in defect pre-
diction. On NB classifier and RIPPER classifier, the preci-
sion, recall, and F-measure do not perform the best; but on 
RF classifier, the recall and F-measure values of MICHAC 
are superior to those of all other methods. In addition, the 
AUC values by MICHAC are higher than those by all the 
other methods on NB classifier and RIPPER classifier. Alt-
hough the p-values with respect to AUC indicate that there 
exists no significant difference between the performance of 
MICHAC and those of the compared methods on three clas-
sifiers, the Cliff’s Delta d-values suggest the superiority of 
the effect size of MICHAC to those of the compared meth-
ods, except the two cases with the Full method on RF classi-
fier (-0.125) and CS method on RIPPER classifier (-0.063). 

As mentioned above, we find that our feature selection 
method can be applied to other software projects for defect 
prediction and can obtain a competitive prediction perfor-
mance, comparing with results of other methods. 

VI. THREATS TO VALIDITY 
In this subsection, we discuss several main types of va-

lidity threats that affect our studies. 
External validity. Threats to external validity occur 

when the results of our experiments cannot be generalized. 
As a preliminary result, we performed our experiments on 
the NASA and AEEEM datasets to explore the generality of 
our method. The NASA dataset has been widely used in 
many software defect prediction studies, thus it provides us 
a way to compare our method with some representative fea-
ture selection methods for defect predict. Additional studies 
are needed to evaluate how well our method can be general-
ized.  

Internal validity. We list several concerns about the bi-
as in classifier selection and the incorrect implementation 
process of experiments. To avoid these threats, we choose 
three state-of-the-art classifiers, which represent three cate-
gories: NB as a probabilistic model, RF a decision-tree 
model, RIPPER as a rule-based model. For the implementa-
tion, we use WEKA and the MINE tools to avoid the poten-
tial faults during the implementation process of the experi-
ment.  

Construct validity. In experiments, we mainly use F-
measure and AUC metrics to measure the effectiveness of 

 
Figure 4.  Box-plots for F-measure and AUC on 11 projects with three 

classifiers. 

TABLE VIII. FOUR PROJECTS IN THE AEEEM DATASET 

Project # features # modules # defective  
modules 

% defective  
modules 

Eclipse-JDT 77 997 206 20.7% 

Equinox 77 324 129 39.8% 

Mylyn 77 1862 245 13.2% 
Eclipse-

PDE 77 1497 209 14.0% 

TABLE IX.  AVERAGE PERFORMANCE OF FOUR AEEEM PROJECTS 
WITH  THREE CLASSIFIERS ON FOUR METRICS 

Model Metric Full MICHA
C CS GR ReF TC FECA

R 

NB 

P 0.538 0.549  0.594  0.567  0.491 0.547 0.582 
R 0.418 0.412  0.419  0.343  0.316 0.343 0.414 
F 0.468 0.469  0.491  0.426  0.376 0.420 0.481 

W/D/L 2/0/2 2/0/2 3/0/1 3/0/1 3/0/1 1/0/3
AUC 0.771 0.780  0.772  0.734  0.733 0.759 0.772 

W/D/L 3/0/1 2/0/2 3/0/1 4/0/0 3/0/1 2/0/2

RF 

P 0.673 0.667  0.610  0.528  0.535 0.601 0.608 
R 0.421 0.425  0.399  0.383  0.376 0.417 0.406 
F 0.490 0.500  0.471  0.427  0.426 0.475 0.465 

W/D/L 4/0/0 2/0/2 4/0/0 3/0/1 2/0/2 3/0/1
AUC 0.839 0.832  0.776  0.748  0.806 0.794 0.784 

W/D/L 1/0/3 4/0/0 4/0/0 3/0/1 4/0/0 4/0/0

RIPPE
R 

P 0.569 0.574  0.579  0.537  0.532 0.590 0.576 
R 0.393 0.398  0.400  0.346  0.302 0.390 0.381 
F 0.446 0.449  0.458  0.392  0.350 0.448 0.447 

W/D/L 3/0/1 1/0/3 3/0/1 3/0/1 2/0/2 2/0/2
AUC 0.662 0.669  0.659  0.643  0.629 0.660 0.658 

W/D/L 3/0/1 2/0/2 4/0/0 3/0/1 2/0/2 2/0/2
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the defect prediction performance using different feature 
selection methods on three classifiers. However, the choice 
of these two metrics is based on previously published em-
pirical work and we have not provided any proof. A poten-
tial solution is to theoretically optimize the benefit of pre-
dictive results [27]. A further discussion about metrics in 
defect prediction is expected in the future. 

VII. RELATED WORK 

A. Classic Models in Defect Prediction 
Many researchers have proposed various models for de-

fect prediction in terms of within-projects defect prediction. 
Zimmermann et al. [57] showed that employing network 
analysis based on a dependency graph can be efficient to 
predict the central program units, which are defect-prone on 
Windows Server 2003. Thwin et al. [58] employed Ward 
neural network and General Regression neural network 
models for predicting the number of software defects. They 
found that those two models can achieve a good perfor-
mance when using the object-oriented metrics. Recently, 
Jing et al. [59] proposed a novel cost-sensitive dictionary-
learning model for defect prediction. This method can 
achieve the best recall and F-measure metrics among exist-
ing methods. 

For cross-project defect prediction, Zimmermann et al. 
[60] applied decision tree and logistic regression models for 
cross-project defect prediction on 12 real-world software 
application projects. They found that the data and the pro-
cess metric are important for prediction performance. Nam 
et al. [61] introduced transfer learning to utilize the feature 
information of the source projects to help the target projects 
for defect prediction. They have shown that this method can 
achieve an acceptable prediction performance for target 
projects that have limited historical training dataset. Jing et 
al. [74] proposed a novel method employing canonical cor-
relation analysis for heterogeneous cross-project defect pre-
diction on 14 open software projects. This method can 
match the distribution of the source and the target datasets 
maximize the correlation between both datasets. 

B. Feature Selection in Defect Prediction 
A number of prior studies have investigated feature se-

lection methods on predicting defective software modules. 
Gao et al. [20] studied four different filter-based feature 
selection methods with five different classifiers on a large 
telecommunication system and found that the Kolmogorov-
Smirnov method performed the best. Gao et al. [2] present-
ed a comparative investigation to evaluate their proposed 
hybrid feature selection method, which first uses feature 
ranking to reduce the search space and then applies feature 
subset selection. Results indicated that removing 85 percent 
of features does not adversely affect prediction perfor-
mance.  

Prior studies have shown that feature selection can help 
to identify defect-prone changes [48]. In order to investigate 
different feature selection methods to classification-based 
bug prediction, Shivaji et al. [52] utilized six feature selec-

tion methods to iteratively remove irrelevant features until 
achieving the best performance of F-measure.  

Different from our feature selection framework, all the 
feature selection methods of the above literatures are only 
aimed at eliminating irrelevant features with respect to the 
class label, while our framework considers removing redun-
dancy within features. 

Recently work proposes a combined framework to apply 
feature selection to eliminate both irrelevant and redundant 
features from the original dataset. Chen et al. [29] proposed 
a two-stage data preprocessing framework, TC, which com-
bines feature selection and instance reduction [53]. In the 
feature selection phase, they proposed a new algorithm us-
ing feature selection and threshold-based clustering. Liu et 
al. [30] proposed a new feature selection framework, 
FECAR, to conduct feature clustering and feature ranking. 
FECAR first clusters features via k-medoids method and 
then select several representative features from each cluster. 

In our paper, the MICHAC approach is similar to the 
feature selection framework in [29]. The differences be-
tween MICHAC and TC as well as FECAR are as follows. 
TC uses symmetrical uncertainty to conduct feature ranking 
and feature clustering while our framework MICHAC uses 
maximal information coefficient with hierarchical agglom-
erative clustering to conduct feature ranking and feature 
clustering, respectively. Similarly, FECAR employs the k-
medoids clustering to detect representative features. Mean-
while, as mentioned in Section III-B, in MICHAC, the 
number of clusters is automatically determined according to 
the increment of inconsistency coefficient. 

VIII. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a novel feature selec-

tion method, MICHAC, to select an optimized feature sub-
set towards improving defect prediction performance. The 
method involves the following two stages: in the first stage, 
we introduce MIC statistic to select the highly relevant fea-
tures with respect to the class label; in the second stage, we 
leverage HAC algorithm to eliminate the redundant fea-
tures. Experiments on 11 NASA projects and four addition-
al AEEEM projects indicate that the proposed method, 
MICHAC, can perform competitive results and scale to 
open source projects for defect prediction tasks.  

In the future, we plan to apply our method to other clas-
sifiers to study the effect of feature selection on classifiers 
for defect prediction. Meanwhile, we would like to employ 
complex projects that contain more features to validate the 
generality of our feature selection method. In addition, we 
plan to apply our method, MICHAC, to cross-project defect 
prediction to identify defects with different development 
backgrounds. 
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