
Automatic Reproducible Crash Detection
Yongfeng Gu Jifeng Xuan* Tieyun Qian

State Key Lab of Software Engineering
Wuhan University

Wuhan, China
{yongfenggu, jxuan, qty}@whu.edu.cn

Abstract—Crash reproduction, which spends much time of
developers in reading and understanding source code, is a crucial
yet time-consuming task in program debugging. To reduce the
time and resource cost, automatic techniques of test generation
have been proposed. These techniques aim to automatically
generate test cases to reproduce the scenario of a crashed project.
Unfortunately, due to the lack of a detailed comprehension of
the source code, a generated test case may fail in reproducing an
expected crash. In this paper, we propose an automatic approach
to reproducible bug detection. This approach predicts whether
a crash is difficult to reproduce or not via training a classifier
based on historical reproducible crash data. If a crash is difficult
to reproduce, it is better to assign the crash to a developer,
instead of using an automatic technique of test generation. Our
work can help to prioritize crashes and to save the cost of
developers. Preliminary experiments show that our approach
effectively detects reproducible crashes via evaluating 45 crashes.

Index Terms—Crash reproduction, machine learning, test gen-
eration

I. INTRODUCTION

Software testing and debugging spends a large amount of
human labor during software development [1]. Crash repro-
duction is crucial yet time-consuming process in program
debugging since it is hard to fix a bug without being able
to reproduce it. In practice, a common way is that a developer
writes a test case to trigger the crash via reading the failure
trace and buggy source code; then the developer executes this
test case and manually analyzes the reproduced scenario [2].
The way of manually reproducing a crash consumes much
time cost of software development. This cost increases rapidly
with the growing of the project scale [3]. In a large project,
simple bugs may even spend a company unbelievable time
and resource cost. For instance, de Simone [4] has reported
an Apple developer has written a bug of two continuous goto
fail statements. This bug makes the program always jump
to the fail label, no matter what condition the first goto
has. Manual efforts of reproducing such bugs results requires
carefully checking and/or understanding the source code.

Many automatic test generation approaches [5], [6], [7],
[8], [9] have been proposed in recent years to reduce the
manual cost of crash reproduction. By recording the full or
partial executive information of a test case, we can mimic the
original situation when a crash occurs. Then the generated test
case can trigger the expected crash without the intervention of

*Corresponding author.

developers. Unfortunately, despite the promising progress of
test generation techniques, automatic crash reproduction may
fail due to the complexity of software. Without understanding
the buggy source code and the failure trace (also called the
stack trace, which records the executive states and exceptions
while a crash occurs), automatic techniques may generate
many useless or meaningless test cases, which cannot correctly
trigger the crash scenario.

In this paper, we propose an automatic approach to repro-
ducible crash detection. This approach predicts whether a crash
is difficult to be reproduced by learning historical crash data. If
a crash is difficult to reproduce, it is better to assign the crash
to a developer, instead of using an automatic technique of test
generation. Prioritizing crashes with our approach can improve
the schedule of bug fixing by assigning difficult crashes to
human developers and assigning easy crashes to automatic test
generation tools.

In our work, to build a predictive model, we extract 23
features from either the buggy source code or the failure
trace. These extracted features capture general characteristics
of the crashed program, such as the number of related files, the
LoC (Lines of Code) of the crashed method, the type of the
exception. During extracting features, we assume the difficulty
of crash production correlates to the characteristics of the
program to some extend. In our preliminary work, we evaluate
our approach on 45 crashes from the Defects4J dataset [10].
Defects4J is a Java bug database, consisting of 357 real-world
bugs from five open source projects. Each bug is equipped
with at least one test case to reproduce it. We conduct the
evaluation with five-fold cross validation on 45 selected bugs
from three out of five projects. Experiments demonstrate that
our approach effectively can predict the difficulty of crash
reproduction with the prediction accuracy of 0.644.

The main contributions of this paper are as follows.
1. We first address the problem of reproducible crash

detection, namely detecting the difficulty of crash reproduction
for a crashed project. The predicted difficulty can be used to
prioritize crashes by assign difficult crashes to human devel-
opers and assigning easy crashes to automatic test generation
tools.

2. We propose an automatic approach to the reproducible
crash detection by learning from historical crash data. The
detective model is trained by extracting 23 features from the
source code and the failure trace of the targeted project.

II. BACKGROUND

Software crashes are unavoidable in practice. It is necessary
to reproduce a crash before fixing its root cause [11]. In this
section, we describe the background of crash production and
its automatic solutions.

A. Crash reproduction

In this paper, a failure trace denotes the logged information
of exceptions once a crash is triggered; a direct cause method
denotes the first method (by ignoring the methods of the
programming language, such as the JDK APIs in Java) in a
failure trace, which relates to the direct reason of a crash. Then
a direct cause method can be directly extracted from a failure
trace. Note that a direct cause method may be not the root
cause of an crash.

We take Bug 747 from the Apache Commons Lang project
as an example.1 This bug is also Bug 1 in the Defects4J
dataset. The failure trace and code snippets of source code
are shown in Listings 1, 2, and 3. In Listing 1, we notice that
the crash is caused by a number format exception and the input
data that triggers the crash is an input string of “80000000”. In
other words, this exception occurs when the program attempts
to convert a string “80000000” into an integer.

j a v a . l a n g . NumberFormatExcept ion : For i n p u t s t r i n g :
‘ ‘80000000 ’ ’

at j a v a . l a n g . NumberFormatExcept ion . f o r I n p u t S t r i n g (
NumberFormatExcept ion . j a v a : 6 5)

at j a v a . l a n g . I n t e g e r . p a r s e I n t (I n t e g e r . j a v a : 4 9 5)
at j a v a . l a n g . I n t e g e r . va lueOf (I n t e g e r . j a v a : 5 5 6)
at j a v a . l a n g . I n t e g e r . decode (I n t e g e r . j a v a : 9 8 4)
at org . apache . commons . l a n g 3 . math . NumberUt i l s .

c r e a t e I n t e g e r (NumberUt i l s . j a v a : 6 8 4)
at org . apache . commons . l a n g 3 . math . NumberUt i l s .

c rea teNumber (NumberUt i l s . j a v a : 4 7 4)
at org . apache . commons . l a n g 3 . math . N u m b e r U t i l s T e s t .

t e s t L a n g 7 4 7 (N u m b e r U t i l s T e s t . j a v a : 2 5 6)

Listing 1. Failure trace of Bug 747 in the Lang project.

From the trace in Listing 1, a method createInteger()
is identified as the direct cause method since its the first
method in the failure trace except Java JDK. That is, the bug is
directly caused by a method createInteger(), which is
called by another method createNumber(). The location
of source code that throws the exception is when decode()
is invoked in Listing 2. The root cause of the bug is in the
method createNumber() in Listing 3 when hexDigits
> 8.

p u b l i c I n t e g e r c r e a t e I n t e g e r (S t r i n g s t r) {
i f (s t r == n u l l) {

re turn n u l l ;
} / / decode () h a n d l e s 0xAABD and 0777
re turn I n t e g e r . decode (s t r) ;

}

Listing 2. Direct cause method in the failure trace.

1Lang Bug 747, http://issues.apache.org/jira/browse/LANG-747.

p u b l i c Number c rea teNumber (S t r i n g s t r) { . . .
i f (pfxLen > 0) { / / For a hex number

f i n a l i n t h e x D i g i t s = s t r . l e n g t h () − pfxLen ;
i f (h e x D i g i t s > 16)

re turn c r e a t e B i g I n t e g e r (s t r) ;
i f (h e x D i g i t s > 8) / / BUG, l o s s o f c o n d i t i o n s

re turn c r e a t e L o n g (s t r) ;
re turn c r e a t e I n t e g e r (s t r) ;

} . . .
}

Listing 3. Root cause: loss of conditions when hexDigits > 8.

Listing 4 shows one test case that can reveal the bug in
Listing 3. This test case is manually written by developers to
ensure the reproduction of the bug. Among four assertions in
Listing 4, the last assertion makes the program crash and its
previous three assertions cannot trigger the crash. During daily
development, such manually-written test case is hard to be
created because software is complex and understanding source
code is tedious and time-consuming.

p u b l i c vo id t e s t L a n g 7 4 7 () {
a s s e r t E q u a l s (0 x8000 , NumberUt i l s . c rea teNumber

(‘ ‘ 0 x8000 ’ ’)) ;
a s s e r t E q u a l s (0 x8000000 , NumberUt i l s . c rea teNumber

(‘ ‘ 0 x8000000 ’ ’)) ;
a s s e r t E q u a l s (0 x7FFFFFFF , NumberUt i l s . c rea teNumber

(‘ ‘ 0 x7FFFFFFF ’ ’)) ;
a s s e r t E q u a l s (0 x80000000L , NumberUt i l s . c rea teNumber

(‘ ‘ 0 x80000000 ’ ’)) ;
}

Listing 4. A test case to reproduce Bug 747.

B. Automatic test generation

To reduce the manual effort by developers on crash repro-
duction, several automatic approaches based on test generation
have been proposed [5], [6], [7], [8], [9]. Rößler et al. [7]
have proposed a genetic-algorithm based method to trigger
a specific path for a given core dump. Chen and Kim [8]
propose an automatic method based on symbolic execution to
reproduce 31 real-world Java crashes. Xuan et al. [9] mutate
existing test cases to generate new test cases to trigger hard-
to-reproduce bugs.

However, automatically reproducing a crash is hard due
to the complexity of software projects. To date, existing
approaches are far away from fully automatic crash repro-
duction. In this paper, we predict whether a crash is difficult
to reproduce or not, instead of directly reproducing the crash.
Based on our work, developers can assign a hard crash to a
human developer or assign an easy crash to an automatic test
generation tool. Such assignment can assist the schedule of
bug fixing by avoiding assigning all the crashes to developers.

III. OVERALL FRAMEWORK

Fig. 1 illustrates our framework of reproducible crash repro-
duction. The goal of this framework is to build a predictive
model to detect whether a crash is difficult or easy to be
reproduced.

As shown in Fig.1, the framework consists of two main
phases: the training phase and the deployment phase. The

http://issues.apache.org/jira/browse/LANG-747

Feature Extraction

Classifier

Feature Extraction
Difficulty

Prediction

Model
Learning

Training Phase

Deployment Phase

Legend Data Process Model

Buggy Source Code

Buggy Source Code

Failure Trace

Failure Trace

Difficulty Label

Easy or Difficult

Fig. 1. Overall framework of reproducible crash detection.

training phase extracts features from both buggy source code
and the failure trace; historical crash data with these features
as well as the difficulty labels (difficult to be reproduced or
not) are used to train a classifier, such as Naive Bayes. The
deployment phase detects whether a newly-coming crash is
difficult based on the trained classifier.

A. Training Phase

To detect whether a crash is difficult to be reproduced, we
view each crash as a feature vector with 23 features and its
difficulty label (difficult or easy). Each of the 23 features can
be directly extracted from a given crash. In the training phase,
we train a classifier with the historical crash data, i.e., known
crashes with their difficulty labels.

Reproducible crash detection is a binary classification prob-
lem. We extract features from a crash (from both source
code and the failure trace) based on an assumption that these
features correlates the difficulty of crashes. For instance, the
LoC (Lines of Code) is widely-used to measure the complexity
of programs. Then we use the LoC to measure the complexity
of the crash-related code. Details of 23 features in our work
are shown in Section III-C.

B. Deployment Phase

For a newly-coming crash, our work aims to predict whether
this crash is difficult to be reproduced. Given a recorded crash,
the same 23 features as in Section III-A are extracted. Based
on the trained classifier, we label the newly-coming crash as
a difficult one or an easy one. Then the user of our approach
can decide to assign the crash to a human developer since

TABLE I
LIST OF 23 FEATURES FROM SOURCE CODE AND FAILURE TRACE

ID Description
Features from the buggy source code (16 features)

BS1 Number of Java files in the whole project
BS2 Number of classes in the whole project
BS3 Number of variables in the exception class
BS4 Number of methods in the exception class
BS5 Number of import statements in the exception class
BS6 Whether the exception class is inherited from others
BS7 LoC of comments in the exception class
BS8 LoC of methods in the direct cause method
BS9 Number of parameters in the direct cause method
BS10 Number of local variables in the direct cause method
BS11 Number of if-statements in the direct cause method
BS12 Number of loops in the direct cause method
BS13 Number of try-catch blocks in the direct cause method
BS14 Number of assignments in the direct cause method
BS15 Number of invocations in the direct cause method
BS16 Whether has a return value in the direct cause method

Features from the failure Trace (7 features)
FT1 Type of the exception in the failure trace
FT2 Number of lines of the failure trace, without JUnit logs
FT3 Number of classes in the failure trace
FT4 Number of methods in the failure trace
FT5 Whether overloaded methods exist in the failure trace
FT6 Length of the name of the exception class
FT7 Length of the name of the exception method

it is difficult or to assign the crash to an automatic tool of
test generation. This assignment helps to improve the schedule
of solving crashes and to reduce the human labor of crash
reproduction of developers.

C. Feature Extraction

In our proposed framework, we extract 23 features to model
the characteristics of crashes, including 16 features from the
buggy source code and 7 features from the failure trace. The
detailed description of the extracted features is listed in Table I.

1) Features from the buggy source code: We extract 16
features from the buggy source code, i.e., BS1 to BS16.

BS1 and BS2 represent the general information about the
whole project, including the number of Java files and the
number of classes. These features assume that a Java class
with inner classes or anonymous classes may make the crash
reproduction difficult.

BS3 to BS7 capture the details of the exception class. An
exception class in our work denotes the class, which the direct
cause method of the failure trace belongs to. BS3, BS4, and
BS5 record the number of local variable, contained method,
and import statements in the exception class, respectively.
Among these features, BS3 only records the general methods
in the exception class and ignores the class constructors; BS6
indicates whether there exist the inheritance in the exception
class; BS7 records the LoC of the exception class.

BS8 to BS16 extract vital features from the direct cause
method. BS8 counts the LOC of the direct cause method. Then

BS9, BS10, BS11, BS12, and BS13 represent the number of
parameters, local variables, if-statements, loops, and try-catch
blocks in the method, respectively. In BS12, the number of
loops is the sum of the number of for-loops, while-loops, do-
while-loops, and foreach-loops. BS14 captures assignments,
which indicate implicit and explicit data dependencies of
variables in the method. BS15 represents the number of
invocations. We design this feature by assuming that the
difficulty of crash reproduction increases with the growth of
method invocations BS16 counts the number of return values
in the method.

2) Features from the failure trace: We extract 7 features
from the failure trace, i.e., FT1 to FT7.

FT1 shows the type of exception. In our preliminary ex-
periment, we collect 13 kinds of exceptions, including the
null pointer, the index of boundaries, the number format, etc.
FT2 counts the number of lines of the failure trace. FT3 and
FT4 record the number of exception classes and methods in
the failure trace, respectively. FT5 checks whether there exist
overloaded methods in the failure trace. In addition, the length
of the name of the exception class name and the direct cause
method are recorded in FT6 and FT7, respectively. We assume
that there may exist implicit relevance between these two
features and the difficulty of crash reproduction.

IV. EXPERIMENTS

In this section, we present the dataset under evaluation, the
labeling of hard and easy crash reproduction, the evaluation
setup, the preliminary results, and the threats to the validity.

A. Dataset

In our preliminary experiment, we choose 45 real-world
crashes from the Defects4J dataset [10]. Defects4J is a Java
bug database, consisting of five open source projects with 357
reproducible real-world bugs. Due to the advantage of repro-
ducibility of bugs and the unified structure in organization,
many experiments are conducted on the Defects4J database.
For instance, Durieux et al.[12] have investigated results on
three typical repair methods on Defects4J. We choose three
out of five projects: Apache Commons Lang, Joda Time,
and JFreeChart. Each bug in these projects is organized with
the source code of programs and test cases; test cases are
organized in JUnit with at least one failing test case that can
trigger the bug.

Bugs in the Defects4J is not originally extracted for crash
reproduction. To facilitate the study of reproducible crashes,
we only extract bugs, which throw explicit exceptions. In
details, the selection criterion is that the type of exceptions and
the direct root method (see Section II-A) are already recorded
in the failure trace. For instance, if a crash is caused by the
violation of an assertion in JUnit, the direct root method is
ignored in the failure trace. We filter out such crashes with
assertion violation. Among all bugs in these three projects,
we select 45 crashes as our evaluation dataset.

Table II shows the basic statistics on the chosen projects.
Column “#Selected crashes” shows the number of selected

TABLE II
SELECTED CRASHES FROM THE DEFECTS4J DATASET

Project #Selected crashes #Total bugs KLoc #Test cases Test KLoc
Lang 25 65 22 2,245 6
Joda-Time 10 27 28 4,130 53
JFreeChart 10 26 96 2,205 50
Total 45 118 146 8,580 109

crashes; Column “#Total bugs” shows the original number of
bugs in each project; Columns “KLoc”, “#Test cases”, and
“Test KLoC” show the basic statistics for the first crash in
each project. Column KLoC measures the code with 1,000
lines of Code. Apache Commons Lang is a library of java
language extension utilities;2 Joda-Time is a library for the
application of time or date processing;3 and JFreeChart is a
library for drawing professional charts in Java applications.4

B. Labeling difficult or easy crash reproduction

In this paper, we aim to detect whether reproducing a
crash is difficult or easy. In practice, there are many ways
of distinguishing a hard one from an easy one. For instance,
a hard crash reproduction could be a crash that is reproduced
over ten days; or a hard one could be a crash that is reproduced
by over two developers. In our work, we do not discuss which
way is the best to label a hard or an easy crash reproduction.
Instead, we use the following heuristic to simplify the labeling
process.

To label the difficulty of crash reproduction, we directly
count the dependency inside a test case, which triggers the
crash. The dependency number of a test case is defined as
how many dependent method invocations are used to trigger
one crash. To identify the dependency inside test cases, we
use a Java program slicing tool, JavaSlicer.5 JavaSlicer [13] is
an open source dynamic slicing tool developed by Saarland
University. It can trace the Java program executions and
then compute dynamic backward slices. By using JavaSlicer,
we can get exact the dynamic dependency number of each
test case. A test case after executing the slicing keeps the
dependency number inside the test case. Fig. 2 shows the
distribution of the crashes based on the dependency number.
To keep the balance between the difficult crash reproduction
and the easy one, we heuristically choose four as the boundary.
That is, crashes with 1, 2, 3, or 4 dependencies are referred
to as easy ones while crashes with 5 and more dependencies
are referred to as difficult one. Among the 45 crash in our
experiment, we find that 27 crashes are labeled with easy ones
while the other 18 crashes are labeled with difficult ones.

C. Evaluation Setup and Implementation

We evaluate our predictive model in terms of precision,
recall, F-measure, and accuracy. These metrics are defined as
follows,

2Apache Commons Lang, http://commons.apache.org/lang/.
3Joda Time, http://joda.org/joda-time/.
4JFreeChart, http://jfree.org/jfreechart/.
5JavaSlicer, http://github.com/hammacher/javaslicer/.

http://commons.apache.org/lang/
http://joda.org/joda-time/
http://jfree.org/jfreechart/
http://github.com/hammacher/javaslicer/

Precision(X) =
#correctly predicted crashes with X label

#crashes that are predicted as X

Recall(X) =
#correctly predicted crashes with X label

#crashes with X label

F -measure(X) =
2× Precision(X)×Recall(X)

Precision(X) +Recall(X)

Accuracy =
#correctly predicted crashes

#total crashes

where X denotes either the difficult label or the easy label of
crashes.

We count the evaluation based on k-fold cross validation,
which is a basic validation method in data mining. This
validation randomly divides the dataset into k folds with equal
number of instances; in each round, one fold is used in the
deployment phase while the other k − 1 folds are used in
the training phase. Then the metric values in k rounds are
collected and the average values are calculated. In our work,
we use 5-fold cross validation to evaluate our experiment.

We implement our tool with Java JDK 1.7. The feature
extraction in Section III-C is based on Spoon [14], a Java
program analysis tool; the labeling of crash reproduction in
Section IV-B is based on JavaSlicer [13], a dynamic slicing
tool for Java; the training phase and the deployment phase in
Section III are based on Weka.6 Weka [15] is a data mining
tool suite, which consists of many existing machining learning
algorithms.

In our work, without loss of generality, we use five typical
classifiers, including Naive Bayes (the multi-nomial imple-
mentation of Naive Bayes), Random Forest (a state-of-the-art
decision tree), C4.5 (a typical decision tree), SMO (Sequential
minimal optimization), and KStar (a lazy learning classifier).

D. Results

We use five typical classifiers to evaluate our approach.
Table III shows the metric values of precision, recall, F-
measure, and accuracy, respectively.

First, we can find that Naive Bayes has the highest accu-
racy of 0.644 while the other classifiers are not higher than
0.600. SMO has the lowest accuracy of 0.533 among the five
classifiers.

Second, Naive Bayes has the highest precision for both
two classes (difficult and easy ones) of 0.762 and 0.542,
respectively. We notice that Naive Bayes reaches the highest
recall of the difficulty class and does not perform well in the
recall of the easy class, which is 0.593 and the lowest among
the five. The similar result occurs in F-measure: Naive Bayes
reaches the highest F-measure of 0.619 in the difficult class
but the second highest in the easy class. Random Forest does
have the highest recall and F-measure of the easy class (0.741
and 0.678, respectively) while those of the difficult class are
low (0.333 and 0.387, respectively). Detecting reproducible
crashes with Random Forest may cause the untrusted results.

6Weka, http://www.cs.waikato.ac.nz/ml/weka/.

Fig. 2. Distribution of the crashes by counting the number of invocations that
trigger the crash.

Third, Naive Bayes has the best stability among precision,
recall and F-measure when comparing with the other four
classifiers. For instance, the easy class by SMO can reach
the recall of 0.704, but the difficult class just reaches 0.278.

Generally speaking, our approach based on the Naive Bayes
classifier performs well, even with our small dataset of 45
crashes. The other four classifiers can work but have not
achieved better results than the Naive Bayes. Since our ex-
periment is preliminary, the empirical results can be improved
in the future. The threats to the validity of our work are shown
in Section IV-E.

E. Threats to Validity

In this work, we mainly consider two kinds of threats to the
validity: internal validity and external validity.

Internal validity. In our preliminary experiment, we use
JavaSlicer to find the dependency inside a manually-written
test case. To our knowledge, all program slicing tools cannot
guarantee an exactly accurate result when slicing real-world
programs. Hence, the number of invocations that are used to
trigger a crash may be slightly disturbed. In our work, we
distinguish the difficulty of crash reproduction by finding the
mean number of invocations of all crash data. The boundary
between the difficult crash reproduction and the easy one is
decided by empirical data. It is possible that this boundary
changes when we move to another dataset. In our work, we
only use the boundary to show that it is feasible to learn a
classifier to detect difficult or easy crash production.

External Validity. The dataset of crash data in our pre-
liminary work only contains 45 crashes. These crash data are
collected from the real-world bugs in the Defects4J dataset.
However, the number of crashes is small. Many classification
techniques, including the ones in our experiment, are limited
by the number of data. We will add more crashes in our future
work to enlarge the data under evaluation.

V. RELATED WORK

To reduce the manual work in crash reproduction, many
automatic approaches to crash reproduction have been pro-
posed. Artzi et al. [5] create ReCrash, which reproduces

http://www.cs.waikato.ac.nz/ml/weka/

TABLE III
METRIC VALUES OF PRECISION, RECALL, F-MEASURE, AND ACCURACY FOR FIVE CLASSIFIERS, BASED ON 5-FOLD CROSS VALIDATION

Classifier Precision Recall F-measure AccuracyEasy Difficult Easy Difficult Easy Difficult
Naive Bayes 0.762 0.542 0.593 0.722 0.667 0.619 0.644
Random Forrest 0.625 0.462 0.741 0.333 0.678 0.387 0.578
C4.5 0.667 0.500 0.667 0.500 0.667 0.500 0.600
SMO 0.594 0.385 0.704 0.278 0.644 0.323 0.533
KStar 0.643 0.471 0.667 0.444 0.655 0.457 0.578

crashes via storing partial copies of method arguments in the
memory. Their paper is one of the pioneering works in test
case generation based crash reproduction. Jin and Orso [6]
propose BugRedux, which preserves bug reports that save the
executive information to replay the failure. Rößler et al. [7]
design ReCore, which first use evolutionary test generation to
reconstruct the input data from saved core dumps. A state-
of-the-art approach is Star, presented by Chen and Kim [8].
This approach uses symbolic execution to synthesize test cases
for crash reproduction; 31 out of 55 Java crashes can be
successfully reproduced. Different from the above methods
that generate test case from scratch, Xuan et al. [9] recently
propose an approach to crash reproduction via test case
mutation (i.e., updating existing test case to generate new test
case to trigger the crash). This method leverages existing test
cases and target the hard-to-reproduce crashes.

To the best of our knowledge, our work is the first work
to predict whether a crash is difficult to be reproduced.
Researchers have proposed several works to identify whether
one task can succeed. Le and Lo [16] build a predictive model,
based on support vector machine, to detect whether the fault
localization can be trust or not. Xia et al. [17] propose a
novel approach TIE, which updates the classification model
by new data to recommend suitable reviewers to examine code
changes.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose an automatic approach to re-
producible crash detection. This approach builds a predictive
model to detect the difficulty of reproducing a given crash.
Based on this detection, project managers can assign a diffi-
cult crash reproduction task to human developers as well as
assign an easy task to automatic test generation tools; such
assignment can dramatically save the time cost of developers.

In future work, we plan to enlarge the dataset of our
experiment. In this paper, our preliminary result only consists
of 45 crashes in Defects4J; we believe that more training
data will improve the predictive result by our approach. We
also would like to design more features that can capture the
characteristics of crashes, which lead to a better model. This
work may need manual effort of reading and comprehending
crashes.

ACKNOWLEDGMENT

This work is partly supported by the National Natural Sci-
ence Foundation of China (under grants 61502345, 61272275).

REFERENCES

[1] B. Beizer, Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., 1990.

[2] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier, and M. Mon-
perrus, “B-refactoring: Automatic test code refactoring to improve
dynamic analysis,” Information & Software Technology, vol. 76, pp. 65–
80, 2016.

[3] B. R. S. Pressman, “Third edition), software engineering: A practi-
tioner’s approach,” 2010.

[4] S. De Simone, “Lessons learned from apple’s gotofail bug,” 2014, http:
//www.infoq.com/news/2014/02/apple gotofail lessons.

[5] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures
reproducible by preserving object states.” in ECOOP, 2008, pp. 542–
565.

[6] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-house
debugging,” in International Conference on Software Engineering, 2012,
pp. 474–484.

[7] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea, “Reconstruct-
ing core dumps,” in IEEE Sixth International Conference on Software
Testing, Verification and Validation, 2013, pp. 114–123.

[8] N. Chen and S. Kim, “Star: Stack trace based automatic crash re-
production via symbolic execution,” IEEE Transactions on Software
Engineering, vol. 41, no. 2, pp. 198–220, 2015.

[9] J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via test case
mutation: let existing test cases help,” in Joint Meeting on Foundations
of Software Engineering, 2015, pp. 910–913.

[10] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in Interna-
tional Symposium on Software Testing and Analysis, 2014, pp. 437–440.

[11] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. PP, no. 99, pp. 1–1, 2016.

[12] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J. Xuan,
“Automatic repair of real bugs: An experience report on the defects4j
dataset,” CoRR, vol. abs/1505.07002, 2015. [Online]. Available:
http://arxiv.org/abs/1505.07002

[13] C. Hammacher, K. Streit, S. Hack, and A. Zeller, “Profiling java
programs for parallelism,” in The Workshop on Multicore Software
Engineering, 2009, pp. 49–55.

[14] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of java
source code,” Software Practice & Experience, 2015.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” Acm Sigkdd
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2010.

[16] T. D. B. Le and D. Lo, “Will fault localization work for these failures? an
automated approach to predict effectiveness of fault localization tools,”
in IEEE International Conference on Software Maintenance, 2013, pp.
310–319.

[17] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change?: Putting text and file location analyses together for more accu-
rate recommendations,” in IEEE International Conference on Software
Maintenance and Evolution, 2015, pp. 261–270.

http://www.infoq.com/news/2014/02/apple_gotofail_lessons
http://www.infoq.com/news/2014/02/apple_gotofail_lessons
http://arxiv.org/abs/1505.07002

