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Abstract Heuristics and metaheuristics have achieved great accomplishments in various fields, and the in-

vestigation of the relationship between these algorithms and the problem hardness has been a hot topic in the

research field. Related research work has contributed much to the understanding of the underlying mecha-

nisms of the algorithms for problem solving. However, most existing studies consider traditional combinatorial

problems as their case studies. In this study, taking the Next Release Problem (NRP) from the requirements

engineering as a case study, we investigate the relationship between software engineering problem instances and

heuristics. We employ an evolutionary algorithm to evolve NRP instances, which are uniquely hard or easy

for the target heuristic (Greedy Randomized Adaptive Search Procedure and Randomized Hill Climbing in this

paper). Then, we use a feature-based method to estimate the hardness of the evolved instances, with respect to

the target heuristic. Experimental results demonstrate that, evolutionary algorithm can be used to evolve NRP

instances that are uniquely hard or easy to solve. Moreover, the features enable the estimation of the target

heuristics’ performance.

Keywords problem hardness, next release problem, computational intelligence, requirements engineering,

evolution algorithm
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1 Introduction

Heuristics and metaheuristics have been successfully applied to problem solving in various problem do-

mains [1–7], due to their effectiveness and efficiency. Furthermore, aside from problem solving, under-

standing the behavior of heuristic algorithms, and learning about the strength and weakness of these

algorithms have always been hot topics in the research field [8,9]. To discover the suitability of applying

these techniques for problem solving, recent years have witnessed a rapid growing research interest that

intends to discover the relationship between algorithm performance and instance-specific features [10–12].

The features represent the measurable attributes of the instances generated by a computational extrac-

tion process, which describe the characteristics of the instances [8], such as the distribution indicators of
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the constraints, correlation coefficient between variables, etc. The research work in this category shares

a similar paradigm, i.e., first an evolutionary algorithm is employed to evolve a set of problem instances

that are uniquely hard or easy to solve. Then, approaches such as meta-learning [13] and algorithm

selection [14] are usually adopted, to mine the potential factors that cause the difference algorithm per-

formance. Within this mining process, the suitable choice of the features are essential to the success of

the learning stage.

However, despite the promising achievements these approaches have accomplished, these approaches

still face several limitations. For example, most of these approaches consider traditional combinatorial

problems as their case studies, such as the traveling salesman problem [10,12,15] and the graph coloring

problem [11]. The reason for this phenomenon might be that, the formulations and the encoding schemes

for these traditional problems are relatively simple. Meanwhile, since these traditional problems have

been extensively studied, some features could be directly obtained from the existing literature, to describe

the characteristics of the problem.

In this study, we take the Next Release Problem (NRP) as a case study, to analyze the relationship

between heuristic algorithms’ performance and the combinatorial problem instances. Unlike the tradi-

tional problems, the NRP originates directly from the software engineering domain [16–18], and plays an

important role in the requirements engineering field [19]. Solving the NRP effectively and efficiently is

crucial to the software engineering life cycle. Hence, analyzing the underlying mechanisms of the algo-

rithms for the NRP is both of great importance and challenging. On the one hand, the insights into such

problem might be generalized to other problem domains, in that there are problems that have similar

formulations or encoding schemes as the NRP [20,21]. On the other hand, understanding the relationship

between heuristics and the problem instances is challenging from the following perspectives.

First, understanding the strength and the weakness of a given heuristic is a difficult yet important

issue. For example, given the problem formulations and the target heuristic, obtaining instances that

are hard to solve itself remain a hard problem1) [12]. In the existing literature, most study relies on

benchmark instances or benchmark function suites [22–25]. If we could acquire the knowledge about

the upper and lower bounds of the target heuristic’s performance (e.g., the best case and the worst case

optimality gap), we could better understand the behavior of the heuristic.

Second, given problem instances, it is challenging to investigate how to assess the suitability of applying

the target heuristic for problem solving. If we could estimate the performance of the target heuristic over

the instances accurately, better decisions could be made on the algorithm selection task. This issue is

particularly important in the software engineering field, because in the software life cycle, the solution

quality achieved by heuristics may have a direct impact on the revenue of stakeholders. Consequently, it

would be profitable to analyze the problem instances that are uniquely hard or easy to solve, and examine

the possibility of predicting the target heuristics’ performance estimation.

Following the existing work, we propose a feature-based research framework, which is illustrated in

Figure 1. The framework comprises two stages, which correspond to the instance evolution and the

learning process, respectively. In the first stage, we use an evolutionary algorithm to evolve a set of NRP

instances that are hard/easy to solve, respectively, with respect to the target heuristic. Then in the second

stage, we analyze the instances obtained from the previous stage, and try to learn about the strengths

and the weaknesses of the target heuristic in terms of the structure mined from the evolved instances.

More specifically, we extract a set of features from the evolved instances, to capture the characteristics of

the NRP instances. In particular, this study is unique in that we extract the features not only from the

instance variables and the constraints, but also from the relaxed problem of the NRP. With these proposed

features, we intend to investigate the possibility of target heuristics’ performance over these instances.

Besides, since directly evolving instances against sophisticated metaheuristics such as the Approximate

Backbone Multilevel Algorithm (ABMA) [16] may be too time consuming, we try evolving instances

against simple heuristics instead, such as Greedy Randomized Adaptive Search Procedure (GRASP)

[19] and Randomly Hill Climbing (RHC) [26, 27], which are basic components of the aforementioned

1) In this study, we measure the hardness of a problem instance for the target heuristic by calculating the optimality

gap that the heuristic could achieve. Larger optimality gap implies harder instances (see Eq. (6)).
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Figure 1 Illustration of the research framework.

metaheuristics, and examine whether these evolved instances pose challenges to the metaheuristics. By

this design, we intend to achieve the desirable instances more efficiently. Then, within the learning stage,

analysis is conducted to examine what features have major influences over the problem instance hardness.

With this framework, we concentrate on the following research questions (RQs):

RQ1: Is an evolutionary algorithm able to evolve NRP instances that are hard/easy to solve, respec-

tively, with respect to the target heuristic?

RQ2: Do the features of the evolved NRP instances with different hardness exhibit different charac-

teristics?

RQ3: Is it possible to predict the performance of the target heuristic, with the help of the proposed

features?

The remainder of this paper is organized as follows. In Section 2, we present the related work of both

evolving hard instances and the NRP. In Section 3, we propose the simple evolutionary algorithm to

evolve the NRP instances. In Section 4, the features capturing the characteristics of the NRP instances

are discussed in detail. The experimental results are given and analyzed in Section 5. The threats to

validity are discussed in Section 6. Finally, the conclusion and the future work are presented in Section 7.

2 Related work

2.1 Evolving hard problem instances

Recently, there have been a series of studies that focus on the investigation, which intend to measure the

features of a problem instance, given a specific heuristic. By performing such task, researchers try to gain

insights into understanding the nature of the target heuristic, and discover what features of a problem

instance make the target heuristic perform poorly or well. For example, empirical studies focusing on

learning from evolve problem instances have been conducted over several problem domains, such as the

constraint satisfaction problem [28], the quadratic knapsack problem [29], the graph coloring problem [11],

the timetabling problem [30], and the traveling salesman problem [10, 12, 15].

The commonality of these existing methodologies is that, they all intend to discover the underlying

relationship between the algorithm performance and the problem-specific features. These features are

also known as meta-data in the machine learning community [8], which are used to depict the distribution

of the problem instances. Based on the features, approaches such as regression analysis could be applied,

to predict the hardness of problem instances, with respect to certain target heuristics. In turn, regression

models could be helpful in making decisions about solving the problem with the most suitable algorithm.

A key challenge that these approaches face is that it has to be guaranteed that the training instances

from which to learn have sufficient diversity [9]. Contrarily, if all the training instances are close to

each other in the feature space, or the target heuristic performs similarly over these instances, helpful
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7
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knowledge would not be possible to be learnt. Hence, what kind of instances and what features should

be employed in the learning process play an essential role.

To cope with this challenge, evolutionary algorithms are adopted to evolve the training instances.

More specifically, a population of individuals are maintained, with each individual represented by a

problem instance. The fitness of each individual is evaluated by certain algorithm performance related

measurements, such as approximation ratio [10] and execution time [12]. Along the evolutionary search

process, new individuals are produced by applying genetic operators over the individuals, and selection

is used to guide the search towards the evolutionary objective, which could be either hard or easy.

Finally, after sufficient problem instances have been evolved, interesting features could be extracted

from these instances to capture the distribution of the problem instances, so that the target heuristic’s

strength and weakness could be understood. For example, meta-learning models could be built, to

investigate the correlations between the problem-specific features and the instance hardness [8, 31–36].

Furthermore, with the extracted features, it is possible to construct regression models. Given an instance,

the performance of certain heuristic could be predicted, without executing the algorithm.

However, as mentioned in Section 1, most existing studies focus on classical problems whose formula-

tions and encoding schemes are relatively simple. In this study, the case study we consider is the NRP,

which has more complex formulations. Since the NRP could be encoded as the combination of numeric

vectors and graph based dependencies. The ideas in this study might be able to transfer to other problem

that have similar encoding schemes.

2.2 The next release problem

As an important problem from software engineering, the NRP intends to maximize the customer profits

from a set of dependent requirements bounded by a predefined budget. With the help of the NRP, a

requirements engineer can make a decision for software requirements to balance the company profit and

the customers’ profit. As a combinatorial optimization problem, the NRP has been proved to be NP-

hard even if the customer requirements are independent. In the most extreme case, i.e., when all the

requirements are independent, the NRP could be reduced to the knapsack problem [19].

In a software project, let R be the set of all the candidate requirements. The size of R is |R| = m.

Each requirement rj ∈ R (1 6 j 6 m) corresponds to a nonnegative cost cj ∈ C. A directed acyclic graph

G = (R,E) indicates the dependencies between these requirements, with R denoting the set of vertices and

E specifying the set of arcs. In the dependency graph G, an arc (r′, r) ∈ E means that the requirement r

relies on r′, i.e., if r is to be realized in the next release, r′ must also be realized, to satisfy the dependency.

We call the requirement r the child requirement of r′. parents(r) is denoted as the set of requirements

that can reach r in the graph, which is defined as parents(r) = {r′ ∈ R|(r′, r′′) ∈ E, r′′ ∈ parents(r)}.

All requirements of parents(r) have to be realized to ensure that r is implemented.

Let S be the customer set related to the requirements R with |S| = n. Each customer si ∈ S,

requests a subset of requirements Ri ⊆ R. Let wi ∈ W be the revenue for the customer si. Let

parents(Ri) be
⋃

r∈Ri
parents(r). Given a customer si, let the set of requirements requested by si be

R̂i = Ri

⋃
parents(Ri). Hence, a customer si can be satisfied by the software release planning if and

only if all the requirements in Ri are realized during the next release. Let the cost of satisfying the

customer si be cost(R̂i) =
∑

rj∈R̂i
cj . The NRP is formulated as follows. Given variables {y1, . . . , yn}

(customer indicator, associated with S) and {x1, . . . , xm} (requirement indicator, associated with R),

as well as the corresponding revenues {w1, . . . , wn} and cost {c1, . . . , cm}, the NRP aims to select a

subset of customers to maximize the corresponding revenues. Without loss of generality, in this study

we assume that the customers are sorted in descending order with respect to their revenue-to-cost ratios

( w1

cost(R̂1)
> w2

cost(R̂2)
> · · · > wn

cost(R̂n)
). The objective of the NRP is to maximize the following formulations:

n∑

i=1

wiyi, (1)
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subject to
m∑

i=1

cixi 6 B, (2)

xi > xj , ∀(ri, rj) ∈ E, (3)

xi > yj , ∀i, j where ri is required by customer j, (4)

xi, yj ∈ {0, 1}, 1 6 i 6 m, 1 6 j 6 n. (5)

In the problem formulations, constraint (2) indicates that the total budget is bounded (B ∈ Z+

is predefined). Constraint (3) means that the dependencies between software components have to be

satisfied. Constraint (4) illustrates the relationships between the customers and the software components.

Constraint (5) ensures that all the variables are integers. Since the NRP was addressed in the literature,

there have been various algorithms that are proposed to tackle the problem. For example, Bagnall

et al. [19] develop several algorithms for solving the NRP, such as greedy search, local search, and

Greedy Randomized Adaptive Search Procedure (GRASP). Ngo-The and Ruhe [37] propose a two-phase

algorithm, which features the combination of mathematical programming and genetic programming.

He et al. [26] address a hybrid ant based model to tackle the problem, in which a Randomized Hill

Climbing (RHC) heuristics is embedded in an ant colony optimization algorithm. Xuan et al. present the

backbone-based algorithm in [16], an effective framework in which other heuristics could be embedded

as components. From the problem formulation, we could observe that each NRP instance comprises

both graph variables and numeric variables. Hence, we could extract features from both the graph and

the distributions of the numeric vectors. Furthermore, the findings of this study could be potentially

inspiring for other problem domains that have graph based or vector based formulations, such as release

planning [20], software upgradability [21], etc. For example, the software upgradability problem intends to

find the most compact subset of software packages, so that the upgrade requirements and the dependencies

among software packages are satisfied. Since the dependencies could be formulated as a graph, which

is similar to the constraints of the NRP, the ideas in this study may be generalized to the software

upgradability problem as well.

3 Evolutionary algorithm to generate NRP instances

In this section, we present the design and the implementation issues of the evolutionary algorithm we use

to evolve NRP instances, which are hard or easy to solve, respectively.

The pseudo code of the proposed Evolutionary algorithm to generate NRP Instance (indicated by

Evol-NI) is presented in Algorithm 1. Evol-NI follows the paradigm of most evolutionary algorithms, i.e.,

the algorithm maintains a population of individuals, which undergo generations of evolution. However,

in this study, each individual is represented by an NRP instance. More specifically, we intend to evolve a

population of NRP instances. Hence, the variables of each individual involve the values of the revenues

and the costs, and/or the dependency structure of the instances. By altering the values of the instance

variables, one NRP instance is transfered to another.

Similar with the existing evolutionary algorithms, Evol-NI consists of two phases, i.e., the initialization

phase and the main loop. During the initialization phase (lines 2–6), Evol-NI generates a population of size

random NRP instances, with the input instance as seed. For each instance, the values of the revenues and

the costs are randomly assigned, and the range of these values are set with respect to [16]. The dependency

graphs of each individual is inherited from the input seed instance. The reason for this design is that, the

structural information (e.g., the dependency graph) could be mined from software repositories [16], but

the revenues and the costs are hard to determine. By this algorithm scheme, we would be able to analyze

the impact of changing the revenues and the costs. Then, Evol-NI undergoes the main loop of evolution

(lines 7–19). At each iteration, new NRP instances are produced by applying genetic operators (crossover

and mutation) to the individuals of the current population. For each individual, another individual is

randomly selected as the mating parent, and the single point crossover is applied over both the revenues
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7



Ren Z L, et al. Sci China Inf Sci March 2017 Vol. 60 032105:6

Algorithm 1 EVOL-NI

Require: seed instance π, evolution goal goal, maximum iteration iter, population size size, mutation rate µ, target heuristic

h, reference solver S;

Ensure: evolved instance π∗;

{Initialization phase};

1: Initialize an empty instance population pop← ∅;

2: for i← 1 to size do

3: π′ ← π;

4: Randomly reassign the revenues and the costs of π′;

5: pop← pop
⋃
{π′};

6: end for

{Main loop};

7: while iter > 0 do

8: iter← iter− 1;

9: pop′ ← ∅;

10: for each π′ ∈ pop do

11: Randomly select another instance π′′ ∈ pop;

12: child← Crossover-NI(π′, π′′);

13: goal′ ← Mutate-Numeric-NI(goal);

14: goal′′ ← Mutate-Structural-NI(goal′);

15: Evaluate(goal′′, h, S);

16: pop′ ← pop′
⋃
{goal′′};

17: end for

18: pop← Select(goal,pop
⋃

pop′);

19: end while

20: return the best instance of pop, with respect to the goal;

and the cost vectors, to obtain the child individual (line 12). Then, perturbation is conducted over the

child individual to make the evolutionary process more exploratory, using the mutation operators (lines

13 and 14).

In this study, the crossover and the mutation operators are adopted, to make the search within the

instance space more diverse. More specifically, the crossover takes two input instances as the parent,

and generates an offspring instance that combines the information of the two parents. The operator is

applied over the vectors w and c, which follows the single point crossover paradigm. The pseudo code

of the crossover is illustrated in Algorithm 2. Besides the crossover operator, we propose two mutation

operators. For the first operator (indicated by Mutate-Numeric-NI), we intend to transfer one NRP

instance to another by modifying the values of the numeric variables. The variables we are interested

in the revenues, the costs, and the budget ratio. By perturbing these variables, we are able to obtain

new offspring instances without changing the dependency structure of the parent instances. The pseudo

code of Mutate-Numeric-NI is presented in Algorithm 3. For the second operator (denoted by Mutate-

Structural-NI), we obtain offspring instances by altering the dependency structure of the parent instances.

To be more specific, we realize the mutation functionality by randomly adding or removing edges between

requirements, with a small probability µ. As mentioned, since the dependency graphs are inherited from

the benchmark instances, we add a constraint to the Mutate-Structural-NI operator, so that the maximum

number of edge does not differ too much from the seed instance (line 6 of Algorithm 4). The reasons

we adopt this design are two-fold. On the one hand, in the existing NRP studies, the dependency graph

could be extracted from software repositories. Meanwhile, the costs and the revenues are hard to measure,

hence are randomly assigned [16, 19]. On the other hand, we choose to perturb the graph to simulate

the evolution of the software structure. However, if we do not restrict the structural perturbation, the

evolution may lead to instances that are highly different from realistic instances. The pseudo code of the

genetic operators are presented in Algorithms 2–4, respectively.

After all the child individuals have been produced, they are evaluated based on the performance of

certain algorithm. In this study, the target heuristics we are interested in include GRASP [19] and

RHC [26], due to their simplicity and the ability to balance the effectiveness and the efficiency [19]. More
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7
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Algorithm 2 Crossover-NI

Require: parent instance π1, parent instance π2;

Ensure: child instance π3;

{Inherit the dependency graph, the budget bound, etc, from the parent};

1: π3 ← π1;

{Randomly select the crossover points};

2: crossoverpointw ← ⌊random(1, n)⌋;

3: crossoverpointc ← ⌊random(1, m)⌋;

{Conduct the crossover};

4: for i← 1 to crossoverpointw do

5: Assign the value of wi with respect to π1;

6: end for

7: for i← crossoverpointw + 1 to n do

8: Assign the value of wi with respect to π2;

9: end for

10: for i← 1 to crossoverpointc do

11: Assign the value of ci with respect to π1;

12: end for

13: for i← crossoverpointc + 1 to m do

14: Assign the value of ci with respect to π2;

15: end for

16: return π3;

Algorithm 3 Mutate-Numeric-NI

Require: input instance π, mutation rate µ;

Ensure: output instance π′;

{Inherit the dependency graph, the budget bound, etc, from the input instance};

1: π′ ← π;

{Perturb the values of w and c, with respect to the mutation rate};

2: for each element wi of the revenue vector of π′ do

3: if random(0, 1) < µ then

4: Randomly reassign the value of wi;

5: end if

6: end for

7: for each element ci of the cost vector of π′ do

8: if random(0, 1) < µ then

9: Randomly reassign the value of ci;

10: end if

11: end for

12: return π′;

specifically, we adopt the optimality gap as the performance measure, which is defined as

gap =
Copt − Cavg

Copt
, (6)

where Copt and Cavg denote the objective values of the optimal solution, as well as the average ob-

jective value of the solutions achieved from the 30 independent executions of the target heuristic (see

Algorithm 5). Given two NRP instances, the one over which GRASP obtains higher optimality gap is

considered to be harder. To obtain the optimal solution quality, we employ Gurobi, which is among the

state-of-the-art mathematical programming solvers2), as the reference solver.

At the end of each iteration, the selection operator is used to select the survival individuals for the next

iteration. According to the goal of the evolution (easy or hard), the individuals are sorted in ascending

or descending order of the optimality gap the target heuristic could achieve, and the first half of the

population survive to the next generation. Then the evolution continues, until the maximum number of

iteration is reached. The summary of the proposed algorithm is presented in Table 1.

2) http://www.gurobi.com.
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Algorithm 4 Mutate-Structural-NI

Require: input instance π, mutation rate µ, maximum number of edge ρ;

Ensure: output instance π′;

{Inherit the dependency graph, the budget bound, etc, from the input instance};

1: π′ ← π;

{Randomly add or remove dependencies between requirements};

2: for each pair of requirements ri ∈ R and rj ∈ R, i < j do

3: if random(0, 1) < µ then

4: if (ri, rj) ∈ E then

5: E ← E\(ri, rj);

6: else if |E| < ρ then

7: E ← E
⋃

(ri, rj);

8: end if

9: end if

10: end for

11: return π′;

Algorithm 5 Evaluate

Require: instance π, target heuristic h, reference solver S;

Ensure: objective value;

1: Cavg ← Average objective values of applying h over π;

2: Copt ← Objective value of applying S over π;

3: return
Copt − Cavg

Copt

;

Table 1 Summary of Evol-NI

Component Value Component Value

Target heuristics GRASP and RHC Mutation rate Parameter, see Section 5

Population size Parameter, see Section 5 Selection type Truncation selection

Crossover type Single point crossover Fitness evaluation Optimality gap

Mutation types Numeric and structural Evolution goal Hard/easy

4 Capturing the NRP characteristics using features

In this section, we discuss the features that may lead to hard and easy NRP instances. In this study, we

consider three sets of features that may influence the instance hardness.

The first set of features intend to capture the characteristics of the NRP instances’ dependency graph,

in that software systems could be treated as networks of components connected by certain dependence

relationships [38]. As mentioned in Section 2, for each NRP instance, the dependency relationship between

software components could be abstracted as a directed graph. Hence, features could be extracted from

the graph. In this study, the graph-based features include (1) the average node betweenness, (2) the

standard deviation of the node betweenness, (3) and (4) the average in/out degree, (5) and (6) the

standard deviation of in/out degree.

The second set of features try to characterize the distribution of the instance parameters, e.g., the

distribution of the revenues and the costs. The features in this set include (7) the budget bound,

(8) the correlation between each customer’s revenue and the corresponding cost, (9)–(11) the average

revenue/cost/revenue-to-cost ratio, (12)–(14) the coefficient of variation of the revenues/costs/revenue-

to-cost ratio.

The final set of features is extracted from the relaxed version of the NRP. The motivation of these

features is inspired by the core concept from the knapsack problem literature [39, 40]. For the knapsack

problem, the concept of the core problem is based on the difference between the optimal solutions and

the permutation of all the variables, which are sorted according to their profit-to-weight ratio. The

larger the difference is, the larger the core problem will be, which might subsequently imply that the

corresponding knapsack instance is more difficult. In contrast, small core problems usually imply easy

knapsack instances. However, since the optimal solutions could not be obtained in advance, the optimal
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7
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solution to the relaxed knapsack problem is usually employed as a compromise. More detailed information

about the concept could be found in [41].

In the existing literature, it has been demonstrated that the NRP is closely related to the knapsack prob-

lem. For example, the NRP is reducible to the knapsack problem by omitting the dependencies between

the customers and the requirements [19]. Also, both the problems have similar solution representations,

i.e., the solutions could be indicated by a binary vectors. In this study, we intend to extend the idea of the

core concept to the NRP domain. Hence, for the rest of this section, we shall introduce these features in

detail. As mentioned, in this study, we assume the customers are sorted according to the revenue-to-cost

ratio. Given an optimal solution {y∗1 , . . . , y
∗
n} to the NRP, we define the following auxiliary variables:

j1 = min{1 6 j 6 n|y∗j = 0}, j2 = max{1 6 j 6 n|y∗j = 1}, jmin = min{j1, j2}, jmax = max{j1, j2}. Intu-

itively, the smaller jmax − jmin is, the more similar the sorted customer list is to the optimal solution3).

In the most extreme case, if j1 = j2+1 holds, a simple sort to the customer list could lead to the optimal

solution. Furthermore, due to the intrinsic hardness of the NRP, we consider the relaxed version of the

NRP in [19], i.e., we replace constraint (5) with the following constraint:

xi ∈ [0, 1], yj ∈ [0, 1], 1 6 i 6 m, 1 6 j 6 n. (7)

Given the optimal solution {ŷ1, . . . , ŷn} to the relaxed NRP, we define ĵ1, ĵ2, ĵmin, ĵmax as follows:

ĵ1 = min{1 6 j 6 n|ŷj = 0}, ĵ2 = max{1 6 j 6 n|ŷj > 0}, ĵmin = min{ĵ1, ĵ2}, ĵmax = max{ĵ1, ĵ2}. With

the auxiliary variables ĵmin and ĵmax, the customer set could be partitioned into three subsets (denoted as

subset1, subset2, and subset3 correspond to those customers with index ranging from [1, ĵmin), [ĵmin, ĵmax],

and (ĵmax, n], respectively). We introduce the following features: (15)–(17) relative scales of the three

subsets, (18)–(23) the rescaled sum of revenues and sum of the costs over the three customer subsets as

features. Besides, (24) the upper bound obtained from the optimal solution to the relaxed NRP instance

is also used as a feature. Among these features, features (15)–(23) are defined as follows:

scale.subset1 =
ĵmin

n
, (8)

scale.subset2 =
ĵmax − ĵmin

n
, (9)

scale.subset3 =
n− ĵmax

n
, (10)

sum.revenue.subset1 =

∑
16i<ĵmin

wi∑
16i6n wi

, (11)

sum.revenue.subset2 =

∑
ĵmin6i6ĵmax

wi∑
16i6n wi

, (12)

sum.revenue.subset3 =

∑
ĵmax<i6n wi∑
16i6n wi

, (13)

sum.cost.subset1 =

∑
16i<ĵmin

cost(R̂i)∑
16i6m ci

, (14)

sum.cost.subset2 =

∑
ĵmin6i6ĵmax

cost(R̂i)∑
16i6m ci

, (15)

sum.cost.subset3 =

∑
ĵmax<i6n cost(R̂i)∑

16i6m ci
. (16)

In summary, in this section, we propose 24 features that may have influences on the hardness of the

evolved instances, which are illustrated in Table 2. In the following section, we would proceed to examine

the influences of these features.

3) If there are multiple optimal solutions, the one which minimizes jmax − jmin is adopted.
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Table 2 Summary of the proposed features

Feature set ID Feature name Description

1 avg.node.between Average node betweenness of the dependency graph

2 sd.node.between Standard deviation of the node betweenness of the dependency graph

3 avg.in.degree Average in degree of the dependency graph

1 4 avg.out.degree Average out degree of the dependency graph

5 sd.in.degree Standard deviation of the in degree of the dependency graph

6 sd.out.degree Standard deviation of the out degree of the dependency graph

7 budget.bound Total budget bound

8 cor.revenue.cost Correlation between each customer’s revenue and cost

9 avg.revenue Average revenue of the customers

10 avg.cost Average cost of the customers

2 11 avg.ratio Average revenue-to-cost ratio of the customers

12 cov.revenue Coefficient of variation of the revenues

13 cov.cost Coefficient of variation of the costs

14 cov.ratio Coefficient of variation of the revenue-to-cost ratios

15 scale.subset1 Relative scale of subset 1, see Eq. (8)

16 scale.subset2 Relative scale of subset 2, see Eq. (9)

17 scale.subset3 Relative scale of subset 3, see Eq. (10)

18 sum.revenue.subset1 Rescaled sum of revenues over subset 1, see Eq. (11)

3 19 sum.revenue.subset2 Rescaled sum of revenues over subset 2, see Eq. (12)

20 sum.revenue.subset3 Rescaled sum of revenues over subset 3, see Eq. (13)

21 sum.cost.subset1 Rescaled sum of costs over subset 1, see Eq. (14)

22 sum.cost.subset2 Rescaled sum of costs over subset 2, see Eq. (15)

23 sum.cost.subset3 Rescaled sum of costs over subset 3, see Eq. (16)

24 upper.bound The upper bound obtained from the optimal solution

to the relaxed NRP instance

5 Experimental results

In this section, we intend to systematically investigate the RQs raised in Section 1. Through investigating

the RQs, we would like to examine the possibility of obtaining instances that achieve sufficient diversity

in the objective space and the feature space (RQ1 and RQ2), as well as the possibility of estimating the

performance of heuristics (RQ3). In particular, for each experiment, we consider two target heuristics,

i.e., GRASP and RHC, against which we evolve the instances. The reason we do not consider more

complicated heuristics such as the Approximate Backbone Multilevel Algorithm (ABMA) within the

evolution process is that ABMA has a relatively high computational complexity compared with the two

target heuristics in this study. Meanwhile, this is also a common paradigm in the existing instance evolving

studies [10, 12]. However, after the evolution process, we are interested in evaluating the performance

of ABMA variants (in which GRASP and RHC are embedded) over the evolved instances, to examine

whether these instances pose challenge to ABMA.

5.1 Preliminaries

All the experiments are conducted on 5 Intel i5 3.2-GHz PCs with 4 GB memory running GNU/Linux

with kernel 3.16, and each PC executes single Evol-NI process. The algorithms are implemented in C++,

and the predictive models are realized in R. More specifically, for the predictive models, we consider 3

regression models, i.e., the Ridge Regression (RR) [42], the Multivariate Adaptive Regression Splines

(MARS) [43] and the Random Forests (RF) [44]. The reasons we adopt these models are two-fold. First,

all the 3 models have been widely used in the field of algorithm performance estimation, and have been

demonstrated to be effective in predicting heuristics’ performance [10, 12, 45]. Second, the 3 models

provide the interface to rank the features with respect to their relative importance. In particular, MARS

and RF support built-in feature selection mechanisms [43, 44]. For RR, we adopt the implementation
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7
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Table 3 Summary of parameter configurations

Target heuristic Population size Mutation rate

Easy Hard Easy Hard

GRASP 10 10 5 15

RHC 0.06 0.04 0.02 0.05
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Figure 2 Performance of GRASP and RHC over evolved and random instances. (a) GRASP; (b) RHC.

of [46], which is able to adaptively select penalty parameters for features.

For the seed instances for Evol-NI, we use the benchmark instances from [19] (NRP1–NRP5, with

budget ratio selected from {0.3, 0.5, 0.7}). For these benchmark instances, the values of both the

revenues and the costs are randomly assigned [19]. To evolve hard NRP instances, we execute Evol-NI

over each seed instance for 30 independent runs. The easy NRP instances are generated in a similar

way. By this design, we obtain 450 hard NRP instances and 450 easy NRP instances for each target

heuristic, respectively. As a comparison, we also generate 900 random instances. For these instances, the

dependency graphs are the same as the seed instances, while the revenues and the costs follow the same

distributions of the seed instances.

Besides, as described in Section 3, there are two main parameters in Evol-NI, i.e., the population size

and the mutation rate. For the other parameters, such as the number of objective value evaluations,

we observe that Evol-NI is not very sensitive, as long as the number is not too small. Hence, for each

combination of target heuristic and evolution goal, the maximum number of objective value evaluations

is set with 2000. Then, we employ an off-the-shelf tuning tool irace [47] to automatically tune the two

parameters. In particular, the candidates of the two parameter are {5, 10, 15, 20} for the population size,

and [0.01, 1] for the mutation rate, respectively. We adopt the default setup of irace, and obtain the

recommended parameter values, which are presented in Table 3.

5.2 Answers to research questions

Investigation of RQ1: We address RQ1 by illustrating the distribution of the performance measure

(optimality gap) of the target heuristics over the two sets of evolved instances and the random instances

in Figure 2. In the figure, each boxplot depicts the distribution of the optimality gap achieved by GRASP

and RHC over the evolved instances, with respect to the combinations of the seed instances and evolution

goals. Companioned with the boxplots, in Table 4, we present the statistics of the results obtained by

Evol-NI, over each seed instance. The table is organized as follows. The first two columns specify the

information of the seed instances, which consist of the instance indicator (represented as ID) [19] and

the budget ratio. Then, in columns 3–14, we present the statistics for the optimality gaps achieved

by Evol-NI for GRASP and RHC, respectively. In particular, for the two target heuristics, associated

with each evolution goal (easy and hard), we provide the average optimality gap (denoted as gap), the

corresponding standard deviation (indicated as SD) with respect to the multiple independent runs, as
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7



Ren Z L, et al. Sci China Inf Sci March 2017 Vol. 60 032105:12

Table 4 Average optimality gap achieved by Evol-NI with different evolution goals

Seed instance Easy instance (GRASP) Hard instance (GRASP) Easy instance (RHC) Hard instance (RHC)

ID Ratio Gap SD Time (s) Gap SD Time (s) Gap SD Time (s) Gap SD Time (s)

0.30 0.16 0.04 72.53 0.41 0.06 202.74 0.03 0.01 93.29 0.41 0.07 196.81

1 0.50 0.09 0.02 51.28 0.30 0.06 185.85 0.02 0.01 87.48 0.40 0.06 332.65

0.70 0.04 0.01 52.83 0.21 0.04 213.27 0.01 0.00 72.42 0.37 0.06 229.44

0.30 0.27 0.04 419.09 0.56 0.08 12033.29 0.04 0.01 905.57 0.38 0.03 14566.88

2 0.50 0.16 0.02 2809.66 0.39 0.05 32362.53 0.03 0.01 721.33 0.40 0.03 50536.51

0.70 0.08 0.02 797.49 0.23 0.03 4918.88 0.01 0.01 4196.27 0.35 0.04 30021.20

0.30 0.14 0.02 658.42 0.38 0.06 2407.49 0.02 0.01 608.38 0.32 0.04 17216.69

3 0.50 0.07 0.02 690.99 0.23 0.03 6787.79 0.01 0.00 708.24 0.28 0.05 718.03

0.70 0.02 0.00 725.36 0.11 0.02 759.74 0.00 0.00 741.79 0.16 0.03 721.03

0.30 0.16 0.06 2261.15 0.36 0.06 10615.78 0.02 0.01 2223.48 0.26 0.04 60097.61

4 0.50 0.07 0.04 3131.61 0.23 0.02 50224.76 0.00 0.01 3123.86 0.21 0.04 61732.66

0.70 0.02 0.00 2886.16 0.12 0.01 4635.16 0.00 0.00 2842.63 0.14 0.02 4941.40

0.30 0.10 0.03 1383.88 0.42 0.19 2700.80 0.00 0.00 1781.87 0.40 0.09 2100.34

5 0.50 0.05 0.03 1816.00 0.30 0.13 1438.72 0.00 0.00 1590.77 0.29 0.11 4119.73

0.70 0.02 0.00 1823.50 0.13 0.05 1859.58 0.00 0.00 1890.91 0.13 0.08 1997.98

well as the average time of the evolution process in seconds (represented by time). From Figure 2 and

Table 4, it is obvious that, Evol-NI is able to obtain NRP instances that are uniquely hard or easy to solve

with respect to the target heuristic. For example, when we use NRP1 with a budget ratio 0.3 as the seed

instance, and employ GRASP as the target heuristic, Evol-NI achieves an average gap of 0.41 (for the

hard evolution goal), and 0.16 for the easy evolution goal. When we consider the efficiency perspective

of Evol-NI, we observe that the time required by the evolution process varies greatly for different seed

instances. For example, taking RHC as the target heuristic, evolving hard instances over NRP4 with

a budget ratio 0.5 costs the longest time, i.e., more than 60000 s in average. Contrarily, evolving easy

instances over NRP1 with a budget ratio 0.7 consumes only 72.42 s in average.

Furthermore, when we compare the evolved instances and the random instances, we could to some

extend confirm the necessity of the hard instances. For instance, from Figure 2, we observe that the

performance of GRASP and RHC over the random instances lies in between the hard and the easy

instances, which is not hard enough to challenge the target heuristic. Consequently, evaluating the

performance of heuristics only with the benchmark and the random instances is insufficient, in that they

may not cover the range of the possible instance difficulty properly. Contrarily, the evolved instances

could provide a better reference to measure the best and the worst performance of the target heuristics.

Besides, as mentioned in this study, we employ two simple heuristics rather than more sophisticated

algorithms, as the target heuristics against which the instances are evolved. The reason for this design

is that, the evaluation of each generated instances requires both multiple executions of target heuristics,

and the execution of the reference solver. Hence, a question rises naturally that, how will metaheuristics

perform over the instances evolved with respect to the embedded heuristics? To investigate this question,

we consider two variants of ABMA, which embed GRASP and RHC into ABMA (denoted as ABMAG

and ABMAR), respectively. The reasons for this framework are two-fold: (1) ABMA is an effective

framework, which is able to balance the exploration and exploitation of the search process. (2) Due to

the modular design, any heuristics could be embedded in ABMA.

The performances of ABMAG and ABMAR are evaluated similarly as in the simple heuristics’ cases,

i.e., over each instances, we independently execute ABMA variants for 30 independent times, with the

same embedded heuristic as the one used in the evolution process. We plot the distribution of ABMA’s

performance with boxplots in Figure 3. From Figure 3, the following observations could be found. First,

the instances that are easy for GRASP/RHC are also easy for GRASPG/GRASPR, which is as expected.

Second, compared with GRASP and RHC, ABMAG and ABMAR tend to achieve lower gap, which is

due to ABMA’s multilevel mechanism. In particular, we observe that the improvement of ABMAG over
Downloaded to IP: 125.220.157.241 On: 2018-03-07 22:59:40 http://engine.scichina.com/doi/10.1007/s11432-016-0089-7
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Figure 3 Performance of ABMA variants over evolved and random instances. (a) ABMAG; (b) ABMAR.

GRASP is less significant than that of ABMAR over RHC. The reason might be that, GRASP is a

greedy-like constructive heuristic, while RHC is an iterative hill climbing, which is more suitable to be

embedded into other frameworks. However, we could find that the instances that are hard for simple

heuristics could still pose challenges to more sophisticated algorithms. For example, in Figure 3(b), for

the instances evolved with NRP1 as the seed instance, the third quartile of gap for ABMAR is up to

0.1762, which indicates that over 25% of evolved instances, the gap achieved by ABMAR is above or equal

to 0.1762. This observation to some extent demonstrates that, even only evolving from simple heuristics,

the obtained instances may pose challenge to the more sophisticated metaheuristics.

Answer to RQ1: Based on these observations, we could answer RQ1 positively, i.e., Evol-NI is able

to evolve NRP instances that are hard/easy to solve, respectively.

Investigation of RQ2: Within the previous RQ, we have demonstrated that Evol-NI is able to

evolve NRP instances that are hard or easy to solve, respectively. Now we intend to examine whether

the problem-specific features of evolved instances exhibit different characteristics.

For all the 24 features, we compare the two sets of feature values with Mann-Whitney-Wilcoxon test.

We specify the null hypothesis to be that there do not exist significant differences between the values of

the feature for the hard and easy instances. Considering all the features proposed, the detailed results

of the hypothesis testing are presented in Table 5. From the table, we observe significant difference over

the majority of the features (22 and 21 for GRASP and RHC, respectively, when considering the 95%

confidence level), which implies that the hard and easy instances obtained by Evol-NI could achieve good

diversity in the feature space. When we consider the 90% confidence level, significant differences could be

detected over all the features, except for 2 features for RHC (scale.subset3 and sum.cost.subset3). Hence,

these features might be potentially helpful in the subsequent regression tasks.

Then, in Figures 4 and 5, we illustrate the distributions of the typical feature values of the evolved

instances, for the two target heuristics4). Specifically, Figures 4 and 5 consist of 4 subfigures, which

correspond to 4 features (avg.node.between, cov.revenue, scale.subset3, and sum.revenue.subset1). From

Figures 4 and 5, we could observe significant differences over 3 out of 4 subfigures, which are evolved

with respect to different goals. For example, considering the cov.revenue feature for both GRASP and

RHC, the hard instances tend to favor smaller feature value, compared with their easy counterparts.

However, considering the scale.subset3 feature, we observe that the distributions for the hard and the

easy instances exhibit similar patterns, i.e., the majority of the feature values are very small. The reason

might be as follow. As mentioned in Section 4, the subset [jmax, n] indicates the customers that are

associated with small avenue-to-cost ratio, who are not selected by the optimal solution to the relaxed

NRP. Meanwhile, since the integer constraint is removed from the relaxed NRP formulations, there could

be more non-zero ŷj values compared with the original NRP, because ŷj could be fractional values for

1 6 j 6 n. Hence, ĵmax = max{min{1 < j < n|ŷj = 0},max{1 < j < n|ŷj > 0}} tends to be close to n.

Consequently, in the third subfigures of Figures 4 and 5, we observe that for both the easy and the hard

4) More detailed version is available at http://oscar-lab.org/people/∼zren/evol-ni.
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Table 5 Comparison results between feature values of easy/hard instances using the Mann-Whitney-Wilcoxon test

Feature p-value p-value Feature p-value p-value

(GRASP) (RHC) (GRASP) (RHC)

(1) avg.node.between < 0.0001 < 0.0001 (13) cov.cost < 0.0001 < 0.0001

(2) sd.node.between < 0.0001 < 0.0001 (14) cov.ratio < 0.0001 < 0.0001

(3) avg.in.degree < 0.0001 < 0.0001 (15) scale.subset1 < 0.0001 < 0.0001

(4) avg.out.degree < 0.0001 < 0.0001 (16) scale.subset2 < 0.0001 < 0.0001

(5) sd.in.degree < 0.0001 < 0.0001 (17) scale.subset3 0.0569 0.1548

(6) sd.out.degree 0.0016 0.0558 (18) sum.revenue.subset1 < 0.0001 < 0.0001

(7) budget.bound 0.0188 < 0.0001 (19) sum.revenue.subset2 < 0.0001 < 0.0001

(8) cor.revenue.cost < 0.0001 < 0.0001 (20) sum.revenue.subset3 0.0007 < 0.0001

(9) avg.revenue < 0.0001 < 0.0001 (21) sum.cost.subset1 < 0.0001 < 0.0001

(10) avg.cost < 0.0001 < 0.0001 (22) sum.cost.subset2 < 0.0001 < 0.0001

(11) avg.ratio < 0.0001 < 0.0001 (23) sum.cost.subset3 0.0627 0.1995

(12) cov.revenue < 0.0001 < 0.0001 (24) upper.bound 0.0002 0.0021
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Figure 4 Histograms for typical feature values, targeting GRASP.
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Figure 5 Histograms for typical feature values, targeting RHC.

instances, the feature values of scale.subset3 tend to be small.

Answer to RQ2: We could not give a positive answer to RQ2, i.e., not all the features exhibit

different characteristics. However, we observe significant difference over the majority of the features, when

we compare the evolved hard NRP instances and their easy counterparts. Furthermore, for the typical

features, the evolution trends for the hard and easy instances exhibit significantly different patterns,

which to some extend demonstrates the diversification ability of Evol-NI.

Investigation of RQ3: After evaluating the evolved instances from the objective space (RQ1) and the

feature space (RQ2), we are interested in the possibility of estimating the solution quality (measured by

the optimality gap in Eq. (6)) the target heuristics could achieve, with the proposed features. To achieve

this, we employ 3 regression models, i.e., RR, MARS, and RF. We adopt the ten-fold cross-validation

to evaluate the performance of the 3 regression models. For the data set, we consider both the evolved

instances and the random instances. The reason for incorporating the random instances is that, these

instances are of intermediate hardness, which might provide better diversity in the objective space (see

Figure 2). Figure 6 presents the ten-fold cross-validation results of the predictive models. In Figure 6,

the prediction results for each predictive model are associated with a subfigure, in which the x-axis and

the y-axis indicate the optimality gap achieved by the target heuristics and the predicted optimality gap
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Figure 6 Ten-fold prediction results over test instances, for GRASP and RHC. (a) GRASP; (b) RHC.

over the test instances, respectively. Each point indicates the results over one or more instances. The

reference line y = x is also plotted in Figure 6. Hence, the closer a point is to the reference line, the more

precise the prediction will be. For example, in Figure 6, we observe that for GRASP, MARS is able to

achieve the best accuracy, followed by RF. Furthermore, the average Root Mean Squared Error (RMSE)

obtained by the 3 models are 0.0057 (RR), 0.0030 (MARS), and 0.0033 (RF). Similarly, for GRASP, the

RMSE achieved are 0.0064 (RR), 0.0041 (MARS), and 0.0031 (RF), respectively.

Then, we examine the possibility of predicting the performance of the two ABMA variants. The

experiment setup is similar as in the experiment for GRASP and RHC, i.e., we employ RR, MARS, and

RF, and adopt ten-fold cross-validation to evaluate these models. Also, the instances include the evolved

instance, as well as the random instances. In Figure 7, we present the ten-fold cross-validation results for

the two variants of ABMA. Figure 7 is organized similarly as Figure 6. From Figure 7, we can see that

all the trained models are able to predict the performance of the ABMA variants properly. For ABMAG,

the average ten-fold RMSE for the three models are 0.0033 (RR), 0.0024 (MARS), and 0.0020 (RF). For

ABMAR, the average ten-fold RMSE values are 0.0061 (RR), 0.0041 (MARS), and 0.0030 (RF).

To gain more insights into the relationships between heuristic performance and the problem-specific

features, we present the importance values of the features for different regression models in Table 6. In

the figure, the importance indicators for the 3 models are the loess R2 statistics of each features (for

RR) [48], the change in the Residual Sums of Squares (RSS) as features are added (for MARS) [49],

and the total decrease in node impurities of each feature (for RF) [50], respectively. For each predictive

model, the larger the indicator value is, the more important the corresponding feature will be. For

instance, for the RF model, the relative importance of each feature is captured by the total decrease

in node impurities (NodeImpurity) of each feature, which is measured by calculating how much RSS

increases when that feature is randomly permuted [44]. Hence, higher indicator values imply higher

feature importance. From the table, we observe that the features extracted from the relaxed NRP

instances (such as sum.revenue.subset1 and scale.subset1) are among the top of the list under most

scenarios, which to some extend implies the usefulness of these features. As an example, when using RF

to predict the performance of GRASP, the sum.revenue.subset1 feature is the most importance feature,
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Figure 7 Ten-fold prediction results over test instances, for ABMAG and ABMAR. (a) ABMAG; (b) ABMAR.

Table 6 Top 5 feature importance values for predictive models

Target heuristic
RR (loess R2) MARS (RSS) RF (NodeImpurity)

Feature Imp Feature Imp Feature Imp

(18) sum.revenue.subset1 0.66 (18) sum.revenue.subset1 24.6 (18) sum.revenue.subset1 9.02

(21) sum.cost.subset1 0.63 (10) avg.cost 7.7 (21) sum.cost.subset1 4.91

GRASP (15) scale.subset1 0.62 (7) budget.bound 6.4 (7) budget.bound 1.99

(10) avg.cost 0.46 (1) avg.node.between 4.2 (15) scale.subset1 1.89

(19) sum.revenue.subset2 0.41 (3) avg.in.degree 3.6 (10) avg.cost 1.45

(18) sum.revenue.subset1 0.57 (18) sum.revenue.subset1 23.5 (21) sum.cost.subset1 6.59

(21) sum.cost.subset1 0.55 (7) budget.bound 6.8 (18) sum.revenue.subset1 3.68

RHC (15) scale.subset1 0.55 (24) upper.bound 6.8 (20) sum.revenue.subset3 2.46

(23) sum.cost.subset3 0.41 (16) scale.subset2 6.3 (7) budget.bound 1.81

(17) scale.subset3 0.38 (13) cov.cost 6.2 (24) upper.bound 1.37

(18) sum.revenue.subset1 0.67 (18) sum.revenue.subset1 20.9 (12) cov.revenue 2.74

(21) sum.cost.subset1 0.64 (10) avg.cost 5.7 (21) sum.cost.subset1 2.14

ABMAG (15) scale.subset1 0.63 (7) budget.bound 4.4 (24) upper.bound 0.83

(10) avg.cost 0.47 (24) upper.bound 3.2 (7) budget.bound 0.71

(19) sum.revenue.subset2 0.43 (1) avg.node.between 2.3 (18) sum.revenue.subset1 0.43

(18) sum.revenue.subset1 0.54 (12) cov.revenue 7.3 (18) sum.revenue.subset1 8.04

(21) sum.cost.subset1 0.51 (23) sum.cost.subset3 3.3 (21) sum.cost.subset1 3.98

ABMAR (15) scale.subset1 0.48 (24) upper.bound 2.3 (7) budget.bound 1.73

(12) cov.revenue 0.47 (7 ) budget.bound 1.7 (10) avg.cost 1.61

(9 ) avg.revenue 0.42 (10) avg.cost 0.6 (15) scale.subset1 1.47

in that randomly permuting this feature in the RF model will lead to an increase of the RSS by 9.02,

which is larger than all the other features.

Answer to RQ3: To this end, RQ3 could also be answered positively. We could predict the perfor-

mance of the target heuristic based on the problem-specific features properly.

As a brief summary, in this section, we present the experimental results and the discussions, considering
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Figure 8 Impact of parameters on Evol-NI.

two heuristics. By investigating the research questions, we confirm the usefulness of the problem-specific

features in the NRP domain. These features could be used in estimating the solution quality that target

heuristics could reach.

6 Threats to validity

There are several objections a critical reader might raise to the evaluation presented in this study, among

which the following three threats deserve special attention.

First, in this study, we apply an off-the-shelf parameter configuration package to conduct the parameter

tuning task. Hence, a question that rises naturally is that, is the proposed algorithm sensitive to the

parameters? To investigate this issue, we carry out the sensitivity analysis over a representative instance,

to examine whether Evol-NI is sensitive to the parameters. In Figure 8, we present the results of the

sensitivity analysis. The experiment is conducted over NRP1 with a budget ratio of 0.3 as follows. First,

the parameters are assigned with the output of irace. Then, for each parameter, we enumerate several

values in its feasible range, meanwhile keep the other parameter assigned with respect to irace. For each

set of modified parameter configuration, we execute Evol-NI over the instance for 30 times, and plot the

average optimality gap against the parameter value, to investigate Evol-NI’s behavior when perturbing

the parameter values. Through this experiment scheme, we intend to evaluate the quality, as well as

the robustness of the offline tuning process. From Figure 8, we observe that irace could achieve effective

parameters that lead to promising results. For example, considering the population size parameter, when

evolving hard instances for RHC, Evol-NI favors larger population size, which is consistent with the

output of irace. Meanwhile, the proposed evolutionary algorithm is not very sensitive to the parameters.

For example, when evolving hard instances for the two target heuristics, the optimality gap is always

above 0.3, which to some extend implies the robustness of the proposed algorithm.

Second, one might argue the choice of the hardness measurement. In this study, we evaluate the hard-

ness of a given NRP instance for the target heuristic using the optimality gap achieved by the heuristic.

Indeed, there are other options such as runtime of the target heuristic. The reason we adopt optimality

gap rather than runtime is that, despite the evaluation overhead, the optimality gap corresponds directly

with the decision making task. Consequently, the decision makers may be more interested in this per-

formance metric. To mitigate this threat, inspired by [51], a feasible approach is to extend the evolution

goal from single-objective to multi-objective. In particular, instead of considering the hardest/easiest

instances, Pareto dominance relationships between two instances could be defined, i.e., one instance is

considered to dominate another instance if the target heuristic is more time consuming and achieves

larger optimality gap over the other instance. Hence, multi-objective evolutionary algorithms could be

applied to obtain instances that are both computationally difficult and time consuming to solve.

Third, following the above issue, the scalability of the instances involved in the experiments also poses

a potential threat to validity. In this study, we consider the instances from [19], in which the number

of requirements ranges from 100 to 1000. The reason is that during the instance evolution, we have
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to solve the generated instances to optimality, so that the performance of the target heuristic could be

evaluated objectively. If we would investigate the evolution of large scale instances, the computational

overhead is intolerable. Meanwhile, in the evolutionary community, the surrogate model [52, 53] is a

popular technique to accelerate the evolution process. The idea of the surrogate model is to build an

approximate evaluation model to evaluate the individuals of the population, which is usually more efficient

than the original problem. Inspired by such techniques, in this study, one possible solution is to employ

an approximate model (e.g., relaxing the problem by removing part of the integer constraints) during the

beginning iterations of instance evolution, and transfer the model gradually towards the original problem.

7 Conclusion and future work

In this paper, we concentrate on evolving hard and easy software engineering problem instances. Taking

the Next Release Problem (NRP) as a case study, this study has contributed to the understanding of

problem hardness in Search-Based Software Engineering (SBSE). The contributions of this paper could

be summarized as follows. First, given the target heuristic (GRASP and RHC in this study), we develop

an evolutionary algorithm Evol-NI to generate hard and easy NRP instances, respectively. Second, we

propose a feature-based method to capture the characteristics of software engineering problem instances,

which extends the work of understanding combinatorial problem hardness. Third, we investigate the

possibility of estimating the performance of the target heuristic.

Despite the promising results the proposed framework achieved in this study, there are several limita-

tions that require much future work. First, in this study, we only consider the relative optimality gap as

the hardness measurement. Investigating the behavior of the evolutionary algorithm in multi-objective

context is an interesting direction. Possible candidate measurements include absolute optimality gap,

runtime, etc. Second, since the target heuristics might be parameterized, an interesting direction is to

evolve instances with different combinations of parameters, and train predictive models to adaptively

set the parameter values [54]. Third, in this study, the performance comparison between different target

heuristics is not investigated. In the future, we would consider extending the study into related directions,

such as algorithm selection [8, 33] and population based algorithm portfolio [55]. Finally, in this study,

we consider the NRP as the case study, which is a typical problem in the field of software engineering.

Meanwhile, since many problems in the software engineering fields could be described as combinatorial

optimization problems. Hence, ideas in this study could be easily transferred into new problem domains.

For example, since many software engineering problems have similar encoding schemes as the NRP, such

as release planning [20], software upgradability [21], etc.
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