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Abstract—Structural testing is a significant and expensive process 
in software development. By converting test data generation into 
an optimization problem, search-based software testing is one of 
the key technologies of automated test case generation. Motivated 
by the success of random walk in solving the satisfiability 
problem (SAT), we proposed a random walk based algorithm 
(WalkTest) to solve structural test case generation problem. 
WalkTest provides a framework, which iteratively calls random 
walk operator to search the optimal solutions. In order to 
improve search efficiency, we sorted the test goals with the costs 
of solutions completely instead of traditional dependence analysis 
from control flow graph. Experimental results on the condition-
decision coverage demonstrated that WalkTest achieves better 
performance than existing algorithms (random test and tabu 
search) in terms of running time and coverage rate. 

Keywords-automatic test generation; condition-decision 
coverage; random walk; structural testing 

I.  INTRODUCTION 
Software testing is an expensive and time-consuming 

process occupying about 50% resource of software 
development cycle [1][25]. A main task of software testing is 
to generate test cases to detect errors. As it is impossible to 
execute a program exhaustively, the test coverage and 
adequacy criterion are employed to measure the quality of 
software testing by a fraction of test cases [2]. Structural testing 
(white-box testing) generates test cases from the codes of a 
program. According to different goals, the criterion of 
structural testing provides distinct granularity, including 
statement coverage, branch coverage, multiple-condition 
coverage, and path coverage [2]. Among these coverage criteria, 
statement coverage is easy to achieve since it only covers every 
statement of a program; and branch coverage covers every 
branch to ensure the correctness of basic structures in a 
program. Some other criteria (e.g., path coverage) provide 
stronger guarantee than branch coverage, but far more test 
cases are necessary. 

Search-based software testing is a dynamic approach for 
automatic test case generation [3]. In contrast to traditional 
static approach (symbolic execution), search-based software 
testing can efficiently reduce the running time and space 
requirement. The kernel of this search-based technology is to 
convert the test data generation into an optimization problem 

and to solve it with approximate optimization algorithms. 
Miller & Spooner [4] firstly treated test case generation as an 
optimization problem and used a hill-climbing algorithm on 
float-point data in 1976; Korel [5] extended their work and 
established a prototype of modern dynamic approaches in 1990. 
Aside from these traditional optimization algorithms, numerous 
meta-heuristic algorithms have received widespread research 
interests in test case generation, including genetic algorithm by 
Xanthakis, et al. [6] and Michael, et al. [7], simulated annealing 
by Tracey, et al [8], scatter search by Sagarna & Lozano [9], 
particle swarm optimization by Windisch, et al. [11], 
estimation of distribution algorithms by Sagarna, et al. [21], 
and tabu search by Díaz, et al. [10].  All these optimization 
algorithms are applied to generate test cases collaborated with a 
set of objective functions. An objective function is designed to 
adapt to a test goal, which is usually defined as an element in 
codes, such as a branch in branch coverage or a path in path 
coverage. Some of objective functions are effective in the 
application of test case generation, but are complex and hard to 
understand or implement [10][16][20]. McMinn surveys the 
objective functions of search-based testing in [3].  

Search-based software testing is an approximate approach, 
which usually searches test cases incorporated some 
randomized mechanism. In random process, random walk is a 
trajectory that consists of successive random steps [22]. 
Random walk has been applied in many fields of computer 
science, including information retrieval [23], machine learning 
[24], and constraint programming [13][14][15]. In constraint 
programming, local search algorithms based on random walk 
exhibits strong ability in approximate solving satisfiability 
problem (SAT) and its variants [13][14]. Motivated by this fact, 
we considered test case generation as random walk of test cases 
and proposed a random walk based algorithm (called WalkTest) 
to solve the automatic structural test case generation problem.  

WalkTest iteratively calls a random walk operator to obtain 
high quality solutions in a solution pool. Firstly, WalkTest 
encodes solutions with Gray codes instead of natural binary 
codes and converts the test goals into minimum objective 
functions. Then, WalkTest selects and updates solutions based 
on a probabilistic walk on the continuous search space of Gray 
codes. After that, the test goals (objective functions) are sorted 
by minimum cost rather than the dependence analysis from 
control flow graph (CFG) to reduce the running time. Finally, 
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WalkTest collects the statistics of coverage and test cases. 
Experimental results on typical programs indicated that 
WalkTest achieves a high coverage rate of structural testing 
(condition-decision coverage) in less time than existing 
algorithms (random test and tabu search). These results also 
demonstrated that WalkTest was not sensitive to the values of 
input parameters, especially in terms of running time.  

The remainder of this paper is organized as follows. Section 
II introduces structural test case generation and related works. 
Section III describes WalkTest algorithm in detail, including 
the framework, its local search operator, and the sorting 
strategy of test goals. Experimental results are presented in 
Section IV. Finally, Section V concludes this paper and 
discusses the directions of future work. 

II. SEARCH-BASED STRUCTURAL TESTING 
Structural testing focuses on the implementation details of 

program units. Among the coverage criteria of structural testing, 
branch coverage (also known as decision coverage) is 
discussed by most literatures [2][5][6][9][11]. This criterion 
meets a requirement that every branch with conditions must be 
executed at least once. A branch is one possible path in the 
execution for a branch node, which is defined as some 
continuous codes of a selection structure. Usually, one branch 
consists of some conditions with connection of logical 
operators. Fig. 1 illustrates an example of a fraction of codes 
with two branches for an if statement. For the branches with 
more than one condition, branch coverage cannot predicate the 
satisfiability of every condition. Therefore, we choose 
condition-decision coverage (C/D coverage) [7][10] as the 
criterion to achieve the test cases for each conditions in this 
paper. 

Besides the requirement of branch coverage, C/D coverage 
requests the execution of both TRUE and FALSE values in 
every condition, i.e., every condition must be evaluated TRUE 
or FALSE at least once for C/D coverage. Table I gives the 
requirements of test case generation in C/D coverage for the 
instance in Fig. 1. In addition to Line 1 and 2 for branch 
coverage, C/D coverage is satisfied, if and only if all eight lines 
are satisfied by a set of test cases. Moreover, if a test case has 
been designed to satisfy Line 1 in Table I, Line 3, Line 5, and 
Line 7 can be done simultaneously due to the logical inclusion 
relationship of Line 1. Thus, this relationship between a branch 
and its conditions leads to a reduction of test goals without loss 
of test quality.  

Under a coverage criterion, the test goals are transformed 
into the value of objective functions and the optimal solutions 
for these functions are transformed back into test cases in 
search-based technology. For objective functions in test data 
generation, a uniform approach is to design a minimum 
function with nonnegative values [3][8]. In other words, the 
conditions or conditional branches in codes are converted into 
functions to indicate the coverage with the values at least zero. 
The forms of objective functions depend on the search 
strategies in different algorithms. We choose a prior and simple 
set of objective functions described in [8] to perform WalkTest. 
Table II presents the details of these functions in C++ language. 
Every operator (logic operator, e.g., && or relation operator, 

e.g., < ) in test goals is uniformly defined as a piecewise 
function. The value of this function equals to zero while the 
logical expression is satisfied by a test case; otherwise, it 
equals to a positive value to predicate the distance between the 
current and optimal test cases. For example, a condition “a < b” 
with operator “<” is defined as a function, which equals to zero, 
if and only if a < b, or equals to a value of (b - a) +K. An 
exception is the operator “logical negation” (i.e., “!” in C++ 
language), which is moved inwards and propagated over the 
original expression rather than defining an extra function. For 
unsatisfied logical expressions, the function values illustrate the 
distance to the optimal solutions.  

III. RANDOM WALK SEARCH 
In this section, we present WalkTest for automated 

structural test case generation in details: framework, random 
walk operator, and sorting strategy.  

Before the technical details of WalkTest, we give a brief 
study on a classic program “triangle classifier”. This program 
contains only 6 branch nodes, and well-known as a benchmark 
for structural testing [19]. Fig. 2 shows the control flow graph 
of “triangle classifier”. Close dependence exists among these 
nodes while a test case is generated to cover some of them. For 
example, Nodes 0, 2, 4, 5 must be covered as a precondition for 
the condition “B==C” in Node 6. This dependence leads to two 
difficulties. On one hand, there is no any direct relationship 
between the conditions of Node 4 and the condition of Node 6. 
Thus, during the process of search, Node 4 cannot provide a 
direct guide for Node 6. On the other hand, Node 6, the last 
node of dependence, cannot be easily covered by random test 
(if the input variables are 32-bit integers, the coverage 
probability of Node 6 is , i.e., ). For these 
reasons, it is necessary to find a search algorithm to handle 
such difficult nodes in test case generation.  

32 32 31/ 2 2 / (2 )× 652

 

1      if ( A > 0 && B > 0 && C > 0 )
2          target 1;
3      else
4          target 2;  

Figure 1.  An example of codes in a branch node. The first two lines and the 
last two lines are both branches. In the first branch, there are three conditions 
connected by logical and “&&” operators (C++ language). 

TABLE I.  REQUIREMENTS OF TEST CASE GENERATION IN C/D 
COVERAGE 

Line Requirements of test case generation
1 A > 0 && B > 0 && C > 0 
2 ! ( A > 0 && B > 0 && C > 0 ) 
3 A > 0 
4 ! ( A > 0 ) 
5 B > 0 
6 ! ( B > 0 ) 
7 C > 0 
8 ! ( C > 0 ) 
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TABLE II.  OBJECTIVE FUNCTIONS IN C++ LANGUAGE 
Algorithm 1: Framework of WalkTest 
Input:    variable list L, times r and t,  

solution pool P  with size q, set of test goals T  
Output: coverage rate R, test case set X 
1      while R < 100% and the iteration times < r do 
2          Initialize the solution pool P with q and i = 0 ; 
3          Run random test for L  
4              and update P for t times with best solutions;  
5          while i < number of test goals do 
6              Sort all test goals and select one test goal Ti ; 
7              Search solutions for Ti  by random walk and update P;
8              i = i + 1; 
9          endwhile 
10    endwhile 
11    Calculate coverage rate R and test case set X;  

Expression Objective function ( fit () ) 
Boolean if TRUE then 0 else K 
a == b if a == b then 0 else abs(a - b) + K 
a != b if a != b then 0 else K 
a < b if a < b then 0 else (a - b)  + K 

a <= b if a <= b then 0 else (a - b)  + K 
a && b min ( fit (a), fit (b) ) 

a || b fit (a) + fit (b) 
! a Negation is moved inwards and propagated over a 

K is defined as a minimal positive number. Function abs( a ) is the 
absolute value of a. 
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Figure 2.  Control flow graph of the “triangle classifier” program. This 
program distinguishes the type of triangle according to the three input edges
(e.g., Node 6 indicates an equilateral triangle). 

In this paper, we employ random walk to achieve the 
randomness in test case generation. Our algorithm, WalkTest, 
searches the solutions similar as walking in the search space 
randomly. The walk steps are controlled by a probability 
parameter. The framework of WalkTest iteratively calls a 
random walk operator to search solutions and sorts test goals 
for the next search iteration. 

A. Framework of WalkTest 
For an input program, the test goals are converted into a set 

of objective functions under a coverage criterion. After this 
conversion, WalkTest generates test cases for the input 
variables with these objective functions. We describe the 
framework of WalkTest in Algorithm 1. WalkTest consists of a 
series of iterations as a multi-restart strategy. At the beginning 
of every iteration, a simple random test is employed to produce 

some initial solutions. Based on these solutions, all unsolved 
test goals are sorted to specify the solving priority. More details 
of this sorting strategy will be discussed in Part C of Section III. 
After the sorting, the first test goal is selected for a random 
walk operator (see Part B of Section III). This operator detects 
the local optimal solution over a series of trials on the binary 
form of variables. Finally, a final coverage rate is calculated 
and the test case set for this coverage is collected.  

A solution pool is incorporated into WalkTest to record 
good quality solutions in search history. This pool stores the 
solutions with minimum costs for every test goal. Due to the 
capacity limitation of solution pool, the anterior solutions with 
bad quality can be flushed out by the posterior good solutions. 
In addition to recording good solutions, this solution pool is 
employed to update solutions in it. Some literatures [9][17] 
have reported that handling one test goal can guide the process 
for other goals. Thus, a test goal may be improved or solved as 
a “side effect”, when the search algorithm tries to handle 
another goal. By this strategy, all the solutions in the pool are 
updated while the related test goals are not achieved in the 
search algorithm. Before such search algorithm, the random 
test mentioned above is assigned to fill some solutions into the 
pool. In general, random test can cover some of test goals 
without search algorithms.  

B. Random Walk Operator 
We employ a random walk search algorithm as a local 

search operator in WalkTest. This random walk operator treats 
the process of searching for test cases as a random walk in 
search space. The search process starts by choosing a solution 
in the solution pool. Then this operator selects a binary bit of 
this solution, and updates it from TRUE to FALSE or vice 
versa. This action is repeated until no better solutions can be 
explored. To escape from the monotonous solutions assembled 
near the original solutions, a probability is specified to update 
the solutions from some ones with bad quality.  

Given a program in structural testing, the solution is formed 
by a vector of values for input variables. In our algorithm, this 
vector is encoded to a binary string, which is a connection of 
binary form of all separate variables. Thus, only one binary 
string needs to be constructed for a program. To provide a 
continuous search space, we encode the solutions with Gray 
codes. Gray code has been applied in some optimization 
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algorithms to overcome the hardness of continuous search 
[3][18]. Gray code is formed as a code with 1-Hamming 
distance (Hamming distance is defined as the number of 
different bits between two solutions) in Hamming space. In 
random walk, a flip is defined as one bit from 1 to 0 or vice 
versa in changing one binary string. Table III shows the 
difference between natural binary code and Gray code. 

A test goal with the least weight is easier to solve than any 
other unsolved test goal. This can be explained as follows. For 
two test goals A and B, if handling A can lead B to be solved, it 
is certain that A has a less weight than B. B cannot be covered 
unless A is covered within one test case. Furthermore, if A and 
B can not provide a guidance for each other, the weight of them 
represents the distance between the current solution and the 
optimal solution. Based on this property, the weight of test 
goals will give a hint for the hardness of resolving. In addition, 
the goals with the same weight within one sorting will be 
sorted by the number of solutions in the pool. Evidently, the 
goals with more solutions are more likely to converge to the 
optimal solution in the search process. It is unnecessary to 
provide the dependence of test nodes in a graph form.  

Algorithm 2 presents the details of random walk operator in 
WalkTest. The random walk operator iteratively flips Gray 
codes of variable vector to generate test cases for specific test 
goals. This operator randomly selects a solution from the 
solution pool and flips it repeatedly. When the pool is empty, a 
random solution is generated as the initial solution instead of 
the above selection. After flipping every bit of the selected 
solution, a set of candidate solutions is formed. The random 
walk operator selects a subset of solutions with the minimum 
cost. Then the operator flips the solutions under the following 
rules: if the cost is better than the original one, the operator 
updates the solution and cost; otherwise, it updates the solution 
from the universal set or the subset according to a specific 
probability. During all the steps, the solution pool is always 
updated to record good solutions.  

This random walk operator contains five random actions (in 
Line 3, 4, 14, 15, and 16 of Algorithm 2, respectively), which 
are designed to provide the diversity of solutions. The last two 
of these actions are controlled under a specific probability. The 
approach of evaluating the value of this probability is discussed 
in [12][13]. Although a dynamic strategy for the probability 
leads to a rapid convergence of algorithm, it introduces some 
additional parameters and complex implementation. Thus, we 
simply set it to a static value in our algorithm. 

C. Test Goals Sorting 
Before the application of random walk operator, the 

unsolved test goals are sorted in the search framework. Some 
literatures discussed the strategies about this sorting [9][10][17]. 
In these literatures, the sorting approaches focus on the CFG. 
For instance, Díaz, et al. [10] provide a strategy that a node is 
picked as a test goal after its parent node is covered in CFG; 
Sagarna & Lozano [9] distinguish the priority of test goals with 
the same cost by the breadth-first traversal in CFG. 

Since the traversal of a graph (such as CFG) is expensive 
both in implementation and running time, we attempt to sort 
goals only related to the costs of objective functions. The 
weight of a goal is defined as the minimum cost among 
solutions of this test goal in solution pool. Meanwhile, the test 
goals without any solution in the pool are set to a maximum 
cost. WalkTest sort the test goals with the weights. 

TABLE III.  AN 8-BIT FORM OF NATURAL BINARY CODE AND GRAY 
CODE 

Decimal value Natural binary code Gray code 
7 00000111 00001000 
8 00000100 00001100 

Decimal value 7 is only 1 bit away from 8 in Gray code, but 4 bits in 
natural binary code. Thus, at least 4 flips are needed to switch between 
decimal 7 and 8 in natural binary code, which may be only 1 flip in Gray code. 

IV. EXPERIMENTAL RESULTS 
In this section, we demonstrate the experimental results 

over some classic programs. WalkTest is implemented in C++ 
and compiled in g++ under an Intel Pentium D 2.8 GHz with 1 
GB memory running Fedora 9 (Linux Kernel 2.6). The 
experiments also run under this environment.  

In comparison with the best heuristic (tabu search [10]) for 
C/D coverage, we conduct our experiments on the same widely 
used programs, including the “triangle classifier program with 
integer”, the “triangle classifier program with real number”, the 
“line rectangle classifier” and the “number of days between 
two dates” with the same implement as [10]. The “triangle 
classifier” problems are to recognize the type of triangle by the 
three input edges (its CFG is in Fig. 2); the “line rectangle 
classifier” problem is to obtain the relationship of position 
between an input line and an input rectangle; and the “number 
of days between two dates” problem is to calculate the number 
of days between the two input dates. The key characteristics of 
every test problem are summarized in Table IV.  

Algorithm 2: Random walk operator 
Input:    test goal Ti, times m , m1
Output: the updated pool P* 

2, probability p, solution pool P 

1    while times of running < m1 do  
2          if a solution of T  in P exists  i

 randomly in P;  3          then select solution si
4          else generate one solution si randomly;  
5          endif 
6          Record the cost c  of s ;   i i

 of s7          Generate Gray code g ;  i i
8          while walking less than m2 times do 

 to generate a set of solutions S9               Flip every bit of gi i ;  
10             Calculate the cost of solutions in Si ; 
11             Update P to P* with new solutions with better quality;
12             Select a subset S * of optima in S , with cost csi i i ; 
13             if csi < ci  
14             then pick one solution g * in S *, randomly; i i
15             else pick a solution gi*, with probability p from S ,  i
16                  or with 1-p from Si*; 
17             endif 
18             Update g  with gi i* and update c  with the cost of gi i*;  
19        endwhile 
20   endwhile 
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TABLE IV.  THE CHARACTERISTICS OF TEST PROGRAMS 

Program Node B-node Obj. Loop Var. Type

Tri-int 12 6 24 0 3 Int 
Tri-real 12 6 24 0 3 Real 

Line-rect 53 18 98 0 8 Real 
Day-date 123 42 108 3 6 Int 

The column “Node” and “B-node” show the number of nodes and branch 
nodes of every program. The following three columns give the number of test 
goals in C/D coverage, loops, and input variables. And the last column is the 
type of input variables with “Int” as integers and “Real” as real numbers. 

 
In the experiments of WalkTest, we set both the parameters 

r and t to 100 in Algorithm 1, respectively, and set both m1 and 
m2 to 5 in Algorithm 2. The size of solution pool q is 40 and 
the probability parameter p is 2/3. WalkTest repeatedly runs for 
100 times to achieve the average time and the maximum time 
of running. TSGen and random test are used for comparison. 
All the results and parameter values of TSGen are collected 
from [10]. In random test, we follow [10] to generate 
10,000,000 test cases randomly.  

Fig. 3 indicates the relationship between running time and 
coverage rate of four programs in Table IV. In the experiment, 
we compare the running time and coverage rate of the three 
algorithms mentioned above. WalkTest and random test keep 
steady tendency in this figure. For coverage rate, WalkTest 
always stays above 90%, but the random test stays on a low 
level. TSGen cannot achieve high coverage rate in short time as 
WalkTest, although TSGen keeps ascending in the curve. To 
achieve the same coverage rate, WalkTest consumes less time 
than the other two reported algorithms, especially random test. 

All the experimental results are summarized in Table V. 
WalkTest achieves a notably improvement over the other two 
approaches on C/D coverage. The coverage rates of all test 

programs are easily achieved 100% by WalkTest. Besides the 
average running time, the maximum running time of WalkTest 
is less than the average time of the other two algorithms. The 
running time of WalkTest is far less than that of random test, 
i.e., under 30% of running time of random test. WalkTest also 
cost less time than TSGen, i.e., from 3% to 98% of running 
time of TSGen. In WalkTest, there is a smooth increase from 
the average running time to the maximum running time for 
most of programs. However, a sharp increase exists in the 
experiments for the “line rectangle classifier” problem in 
running time. It implies that the running time of WalkTest is 
instable for some programs.  

For the programs of the same input variables with different 
precisions, WalkTest consumes nearly the same running time. 
For the programs with different variable types, WalkTest also 
exhibits the similar phenomenon. It implies that WalkTest is 
not sensitive to the data type or precision of input variables. 

V. CONCLUSION 
In this paper, we proposed a random walk based algorithm 

(WalkTest) to solve the problem of structural test case 
generation. After converting the test case generation into an 
optimization problem, WalkTest provides a framework with a 
sorting strategy of test goals and a random walk operator. The 
sorting strategy presents a priority for test goals, which is 
implemented by costs of goals instead of traditional 
dependence analysis from control flow graph. The random 
walk operator works iteratively to achieve local optimal 
solutions. In all the programs of our experiments, 100% 
coverage rate is easy to achieve in a short time. Although 
WalkTest is designed and tested on condition-decision 
coverage, it can be applied on some other coverage criteria, 
such as branch coverage or path coverage.  
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Figure 3.  Relationship between running time and coverage rate. The x-axis is the running time in seconds and the y-axis is the coverage rate in percentage. 
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TABLE V.  EXPERIMENTAL RESULTS FOR PROGRAMS 

Program Rand TSGen WalkTest 
 %cov Ave. %cov Ave. %cov Ave. Max. %Rand %TSGen 
Tri-int, 32 bits 58.33 298 100 21.43 100 0.80 2.00 99.73 96.27 
Tri-real, ±100,000.000 58.33 330 100 0.86 100 0.84 1.96 99.75 2.33 
Tri-real, ±2,000,000.0000 58.33 340 - - 100 0.96 2.21 99.72 -
Line-rect, ±100,000.000 57.14 1210 100 60.69 100 17.52 53.24 98.55 71.13 
Line-rect, ±2,000,000.0000 57.14 1250 - - 100 20.72 68.64 98.34 -
Day-date, 32 bits 7.41 686 100 251.38 100 204.84 221.28 70.14 18.51 

The column “Program” indicates the four programs in Table IV and the range after the program’s name shows the digital precision, e.g., “32 bits” means every 
input variable is an integer with 32 bits; “±100,000.000” means a real number with the range ±100,000 and three significant digits after the point. The following 
three columns show the performance and results of the three algorithms, respectively. The sub-columns: namely “%cov” shows the coverage rate in percentage 
and “Ave.” shows the average running time in seconds. Column “WalkTest” has three extra sub-columns as follows: “Max.” shows the maximum running time in 
seconds, “%Rand” and “%TSGen” show the reduction of average running time in percentage over random test and TSGen (e.g., the value of %Rand is defined as 

). 1 Ave. of WalkTest / Ave. of Rand−

 

In future work, some modifications can be added to 
WalkTest to enhance its performance. For an instance, we will 
combine the static probability parameter with a self-adaptive 
strategy driven by the values of objective functions. In addition, 
we will apply WalkTest to the object-oriented software testing 
in our future work. 
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