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Abstract—Software companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug

triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques

are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce the

scale and improve the quality of bug data.We combine instance selection with feature selection to simultaneously reduce data scale on

the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract

attributes from historical bug data sets and build a predictivemodel for a new bug data set.We empirically investigate the performance of

data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse andMozilla. The results show that our

data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work provides an approach to leveraging

techniques on data processing to form reduced and high-quality bug data in software development andmaintenance.

Index Terms—Mining software repositories, application of data preprocessing, data management in bug repositories, bug data reduction,

feature selection, instance selection, bug triage, prediction for reduction orders
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1 INTRODUCTION

MINING software repositories is an interdisciplinary
domain, which aims to employ data mining to deal

with software engineering problems [22]. In modern soft-
ware development, software repositories are large-scale
databases for storing the output of software development,
e.g., source code, bugs, emails, and specifications. Tradi-
tional software analysis is not completely suitable for the
large-scale and complex data in software repositories [58].
Data mining has emerged as a promising means to handle
software data (e.g., [7], [32]). By leveraging data mining
techniques, mining software repositories can uncover inter-
esting information in software repositories and solve real-
world software problems.

A bug repository (a typical software repository, for storing
details of bugs), plays an important role in managing soft-
ware bugs. Software bugs are inevitable and fixing bugs is
expensive in software development. Software companies
spend over 45 percent of cost in fixing bugs [39]. Large soft-
ware projects deploy bug repositories (also called bug track-
ing systems) to support information collection and to assist

developers to handle bugs [9], [14]. In a bug repository, a
bug is maintained as a bug report, which records the textual
description of reproducing the bug and updates according
to the status of bug fixing [64]. A bug repository provides a
data platform to support many types of tasks on bugs, e.g.,
fault prediction [7], [49], bug localization [2], and reopened-
bug analysis [63]. In this paper, bug reports in a bug reposi-
tory are called bug data.

There are two challenges related to bug data that may
affect the effective use of bug repositories in software devel-
opment tasks, namely the large scale and the low quality. On
one hand, due to the daily-reported bugs, a large number of
new bugs are stored in bug repositories. Taking an open
source project, Eclipse [13], as an example, an average of
30 new bugs are reported to bug repositories per day in 2007
[3]; from 2001 to 2010, 333,371 bugs have been reported to
Eclipse by over 34,917 developers and users [57]. It is a chal-
lenge to manually examine such large-scale bug data in soft-
ware development. On the other hand, software techniques
suffer from the low quality of bug data. Two typical charac-
teristics of low-quality bugs are noise and redundancy.
Noisy bugs may mislead related developers [64] while
redundant bugswaste the limited time of bug handling [54].

A time-consuming step of handling software bugs is
bug triage, which aims to assign a correct developer to fix
a new bug [1], [3], [25], [40]. In traditional software devel-
opment, new bugs are manually triaged by an expert
developer, i.e., a human triager. Due to the large number
of daily bugs and the lack of expertise of all the bugs, man-
ual bug triage is expensive in time cost and low in accu-
racy. In manual bug triage in Eclipse, 44 percent of bugs
are assigned by mistake while the time cost between open-
ing one bug and its first triaging is 19.3 days on average
[25]. To avoid the expensive cost of manual bug
triage, existing work [1] has proposed an automatic bug
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triage approach, which applies text classification techni-
ques to predict developers for bug reports. In this
approach, a bug report is mapped to a document and a
related developer is mapped to the label of the document.
Then, bug triage is converted into a problem of text classi-
fication and is automatically solved with mature text clas-
sification techniques, e.g., Naive Bayes [12]. Based on the
results of text classification, a human triager assigns new
bugs by incorporating his/her expertise. To improve the
accuracy of text classification techniques for bug triage,
some further techniques are investigated, e.g., a tossing
graph approach [25] and a collaborative filtering approach
[40]. However, large-scale and low-quality bug data in
bug repositories block the techniques of automatic bug tri-
age. Since software bug data are a kind of free-form text
data (generated by developers), it is necessary to generate
well-processed bug data to facilitate the application [66].

In this paper, we address the problem of data reduc-
tion for bug triage, i.e., how to reduce the bug data to
save the labor cost of developers and improve the quality
to facilitate the process of bug triage. Data reduction for
bug triage aims to build a small-scale and high-quality
set of bug data by removing bug reports and words,
which are redundant or non-informative. In our work, we
combine existing techniques of instance selection and fea-
ture selection to simultaneously reduce the bug dimen-
sion and the word dimension. The reduced bug data
contain fewer bug reports and fewer words than the orig-
inal bug data and provide similar information over the
original bug data. We evaluate the reduced bug data
according to two criteria: the scale of a data set and the
accuracy of bug triage. To avoid the bias of a single algo-
rithm, we empirically examine the results of four instance
selection algorithms and four feature selection algorithms.

Given an instance selection algorithm and a feature selec-
tion algorithm, the order of applying these two algorithms
may affect the results of bug triage. In this paper, we pro-
pose a predictive model to determine the order of applying
instance selection and feature selection. We refer to such
determination as prediction for reduction orders. Drawn on
the experiences in software metrics,1 we extract the attrib-
utes from historical bug data sets. Then, we train a binary
classifier on bug data sets with extracted attributes and pre-
dict the order of applying instance selection and feature
selection for a new bug data set.

In the experiments,we evaluate the data reduction for bug
triage on bug reports of two large open source projects,
namely Eclipse and Mozilla. Experimental results show that
applying the instance selection technique to the data set can
reduce bug reports but the accuracy of bug triage may be
decreased; applying the feature selection technique can
reduce words in the bug data and the accuracy can be
increased. Meanwhile, combining both techniques can
increase the accuracy, as well as reduce bug reports and

words. For example, when 50 percent of bugs and 70 percent
of words are removed, the accuracy of Naive Bayes on
Eclipse improves by 2 to 12 percent and the accuracy on
Mozilla improves by 1 to 6 percent. Based on the attributes
from historical bug data sets, our predictive model can pro-
vide the accuracy of 71.8 percent for predicting the reduction
order. Based on top node analysis of the attributes, results
show that no individual attribute can determine the reduc-
tion order and each attribute is helpful to the prediction.

The primary contributions of this paper are as follows:

1) We present the problem of data reduction for bug tri-
age. This problem aims to augment the data set of
bug triage in two aspects, namely a) to simulta-
neously reduce the scales of the bug dimension and
the word dimension and b) to improve the accuracy
of bug triage.

2) We propose a combination approach to addressing
the problem of data reduction. This can be viewed as
an application of instance selection and feature selec-
tion in bug repositories.

3) We build a binary classifier to predict the order of
applying instance selection and feature selection. To
our knowledge, the order of applying instance selec-
tion and feature selection has not been investigated
in related domains.

This paper is an extension of our previous work [62]. In
this extension, we add new attributes extracted from bug
data sets, prediction for reduction orders, and experiments
on four instance selection algorithms, four feature selection
algorithms, and their combinations.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background and motivation. Section 3
presents the combination approach for reducing bug data.
Section 4 details the model of predicting the order of apply-
ing instance selection and feature selection. Section 5
presents the experiments and results on bug data. Section 6
discusses limitations and potential issues. Section 7 lists the
related work. Section 8 concludes.

2 BACKGROUND AND MOTIVATION

2.1 Background

Bug repositories are widely used for maintaining software
bugs, e.g., a popular and open source bug repository, Bug-
zilla [5]. Once a software bug is found, a reporter (typically a
developer, a tester, or an end user) records this bug to the
bug repository. A recorded bug is called a bug report, which
has multiple items for detailing the information of repro-
ducing the bug. In Fig. 1, we show a part of bug report for
bug 284541 in Eclipse.2 In a bug report, the summary and
the description are two key items about the information of
the bug, which are recorded in natural languages. As their
names suggest, the summary denotes a general statement
for identifying a bug while the description gives the details
for reproducing the bug. Some other items are recorded in a
bug report for facilitating the identification of the bug, such

1. The subject of software metrics denotes a quantitative measure of
the degree to software based on given attributes [16]. Existing work in
software metrics extracts attributes from an individual instance in soft-
ware repositories (e.g., attributes from a bug report) while in our work,
we extract attributes from a set of integrated instances (e.g., attributes
from a set of bug reports). See Section S1 in the supplemental material,
http://oscar-lab.org/people/�jxuan/reduction/.

2. Bug 284541, https://bugs.eclipse.org/bugs/show_bug.cgi?
id¼284541.
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as the product, the platform, and the importance. Once a bug
report is formed, a human triager assigns this bug to a
developer, who will try to fix this bug. This developer is
recorded in an item assigned-to. The assigned-to will
change to another developer if the previously assigned
developer cannot fix this bug. The process of assigning a
correct developer for fixing the bug is called bug triage. For
example, in Fig. 1, the developer Dimitar Giormov is the final
assigned-to developer of bug 284541.

A developer, who is assigned to a new bug report, starts
to fix the bug based on the knowledge of historical bug fix-
ing [36], [64]. Typically, the developer pays efforts to under-
stand the new bug report and to examine historically fixed
bugs as a reference (e.g., searching for similar bugs [54] and
applying existing solutions to the new bug [28]).

An item status of a bug report is changed according to
the current result of handling this bug until the bug is
completely fixed. Changes of a bug report are stored in an
item history. Table 1 presents a part of history of bug 284541.
This bug has been assigned to three developers and only
the last developer can handle this bug correctly. Changing
developers lasts for over seven months while fixing this bug
only costs three days.

Manual bug triage by a human triager is time-
consuming and error-prone since the number of daily bugs
is large to correctly assign and a human triager is hard to
master the knowledge about all the bugs [12]. Existing
work employs the approaches based on text classification
to assist bug triage, e.g., [1], [25], [56]. In such approaches,
the summary and the description of a bug report are
extracted as the textual content while the developer who
can fix this bug is marked as the label for classification.
Then techniques on text classification can be used to pre-
dict the developer for a new bug. In details, existing bug
reports with their developers are formed as a training set
to train a classifier (e.g., Naive Bayes, a typical classifier in
bug triage [1], [12], [25]); new bug reports are treated as a
test set to examine the results of the classification. In
Fig. 2a, we illustrate the basic framework of bug triage
based on text classification. As shown in Fig. 2a, we view a
bug data set as a text matrix. Each row of the matrix

indicates one bug report while each column of the matrix
indicates one word. To avoid the low accuracy of bug tri-
age, a recommendation list with the size k is used to pro-
vide a list of k developers, who have the top-k possibility
to fix the new bug.

2.2 Motivation

Real-world data always include noise and redundancy [31].
Noisy data may mislead the data analysis techniques [66]
while redundant data may increase the cost of data process-
ing [19]. In bug repositories, all the bug reports are filled by
developers in natural languages. The low-quality bugs accu-
mulate in bug repositories with the growth in scale. Such

Fig. 1. A part of bug report for bug 284541 in Eclipse. This bug is about a
missing node of XML files in Product Web Tools Platform (WTP). After
the handling process, this bug is resolved as a fixed one.

TABLE 1
Part of History of Bug 284541 in Eclipse

Triager Date Action

Kaloyan Raev 2009-08-12 Assigned to the developer
Kiril Mitov

Kaloyan Raev 2010-01-14 Assigned to the developer
Kaloyan Raev

Kaloyan Raev 2010-03-30 Assigned to the developer
Dimitar Giormov

Dimitar Giormov 2010-04-12 Changed status to assigned
Dimitar Giormov 2010-04-14 Changed status to resolved

Changed resolution to fixed

Fig. 2. Illustration of reducing bug data for bug triage. Sub-figure
(a) presents the framework of existing work on bug triage. Before train-
ing a classifier with a bug data set, we add a phase of data reduction, in
(b), which combines the techniques of instance selection and feature
selection to reduce the scale of bug data. In bug data reduction, a prob-
lem is how to determine the order of two reduction techniques. In
(c), based on the attributes of historical bug data sets, we propose a
binary classification method to predict reduction orders.
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large-scale and low-quality bug data may deteriorate the
effectiveness of fixing bugs [28], [64]. In the following of this
section, we will employ three examples of bug reports in
Eclipse to show the motivation of our work, i.e., the neces-
sity for data reduction.

We list the bug report of bug 205900 of Eclipse in Exam-
ple 1 (the description in the bug report is partially omitted)
to study the words of bug reports.

Example 1 (Bug 205900). Current version in Eclipse Europa
discovery repository broken.

. . . [Plug-ins] all installed correctly and do not show
any errors in Plug-in configuration view. Whenever I try
to add a [diagram name] diagram, the wizard cannot be
started due to a missing [class name] class . . .
In this bug report, some words, e.g., installed, show,

started, and missing, are commonly used for describing
bugs. For text classification, such common words are not
helpful for the quality of prediction. Hence, we tend to
remove these words to reduce the computation for bug tri-
age. However, for the text classification, the redundant
words in bugs cannot be removed directly. Thus, we want
to adapt a relevant technique for bug triage.

To study the noisy bug report, we take the bug report of
bug 201598 as Example 2 (Note that both the summary and
the description are included).

Example 2 (Bug 201598). 3.3.1 about says 3.3.0.
Build id: M20070829-0800. 3.3.1 about says 3.3.0.

This bug report presents the error in the version dialog.
But the details are not clear. Unless a developer is very
familiar with the background of this bug, it is hard to find
the details. According to the item history, this bug is
fixed by the developer who has reported this bug. But the
summary of this bug may make other developers confused.
Moreover, from the perspective of data processing, espe-
cially automatic processing, the words in this bug may be
removed since these words are not helpful to identify this
bug. Thus, it is necessary to remove the noisy bug reports
and words for bug triage.

To study the redundancy between bug reports, we list
two bug reports of bugs 200019 and 204653 in Example 3
(the items description are omitted).

Example 3. Bugs 200019 and 204653.
(Bug 200019) Argument popup not highlighting the

correct argument . . .
(Bug 204653) Argument highlighting incorrect . . .

In bug repositories, the bug report of bug 200019 is
marked as a duplicate one of bug 204653 (a duplicate bug
report, denotes that a bug report describes one software
fault, which has the same root cause as an existing bug
report [54]). The textual contents of these two bug reports
are similar. Hence, one of these two bug reports may be cho-
sen as the representative one. Thus, we want to use a certain
technique to remove one of these bug reports. Thus, a tech-
nique to remove extra bug reports for bug triage is needed.

Based on the above three examples, it is necessary to pro-
pose an approach to reducing the scale (e.g., large scale
words in Example 1) and augmenting the quality of bug
data (e.g., noisy bug reports in Example 2 and redundant
bug reports in Example 3).

3 DATA REDUCTION FOR BUG TRIAGE

Motivated by the three examples in Section 2.2, we propose
bug data reduction to reduce the scale and to improve the
quality of data in bug repositories.

Fig. 2 illustrates the bug data reduction in our work,
which is applied as a phase in data preparation of bug tri-
age. We combine existing techniques of instance selection
and feature selection to remove certain bug reports and
words, i.e., in Fig. 2b. A problem for reducing the bug data
is to determine the order of applying instance selection and
feature selection, which is denoted as the prediction of
reduction orders, i.e., in Fig. 2c.

In this section, we first present how to apply instance
selection and feature selection to bug data, i.e., data reduc-
tion for bug triage. Then, we list the benefit of the data
reduction. The details of the prediction for reduction orders
will be shown in Section 4.

Algorithm 1. Data reduction based on FS! IS

Input: training set T with nwords andm bug reports,
reduction order FS!IS
final number nF of words,
final numbermI of bug reports,

Output: reduced data set T FI for bug triage
1) apply FS to nwords of T and calculate objective values

for all the words;
2) select the top nF words of T and generate a training

set T F ;
3) apply IS tomI bug reports of T F ;

4) terminate ISwhen the number of bug reports is equal to
or less thanmI and generate the final training set T FI .

3.1 Applying Instance Selection and Feature
Selection

In bug triage, a bug data set is converted into a text matrix
with two dimensions, namely the bug dimension and the
word dimension. In our work, we leverage the combination
of instance selection and feature selection to generate a
reduced bug data set. We replace the original data set with
the reduced data set for bug triage.

Instance selection and feature selection are widely used
techniques in data processing. For a given data set in a cer-
tain application, instance selection is to obtain a subset of
relevant instances (i.e., bug reports in bug data) [18] while
feature selection aims to obtain a subset of relevant features
(i.e., words in bug data) [19]. In our work, we employ the
combination of instance selection and feature selection. To
distinguish the orders of applying instance selection and
feature selection, we give the following denotation. Given
an instance selection algorithm IS and a feature selection
algorithm FS, we use FS! IS to denote the bug data reduc-
tion, which first applies FS and then IS; on the other hand,
IS! FS denotes first applying IS and then FS.

In Algorithm 1, we briefly present how to reduce the bug
data based on FS ! IS. Given a bug data set, the output of
bug data reduction is a new and reduced data set. Two algo-
rithms FS and IS are applied sequentially. Note that in Step
2), some of bug reports may be blank during feature
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selection, i.e., all thewords in a bug report are removed. Such
blank bug reports are also removed in the feature selection.

In our work, FS ! IS and IS ! FS are viewed as two
orders of bug data reduction. To avoid the bias from a single
algorithm, we examine results of four typical algorithms of
instance selection and feature selection, respectively. We
briefly introduce these algorithms as follows.

Instance selection is a technique to reduce the number of
instances by removing noisy and redundant instances [11],
[48]. An instance selection algorithm can provide a reduced
data set by removing non-representative instances [38], [65].
According to an existing comparison study [20] and an
existing review [37], we choose four instance selection algo-
rithms, namely Iterative Case Filter (ICF) [8], Learning Vec-
tors Quantization (LVQ) [27], Decremental Reduction
Optimization Procedure (DROP) [52], and Patterns by
Ordered Projections (POP) [41].

Feature selection is a preprocessing technique for select-
ing a reduced set of features for large-scale data sets [15],
[19]. The reduced set is considered as the representative fea-
tures of the original feature set [10]. Since bug triage is con-
verted into text classification, we focus on the feature
selection algorithms in text data. In this paper, we choose
four well-performed algorithms in text data [43], [60] and
software data [49], namely Information Gain (IG) [24], x2 sta-
tistic (CH) [60], Symmetrical Uncertainty attribute evaluation
(SU) [51], and Relief-F Attribute selection (RF) [42]. Based on
feature selection, words in bug reports are sorted according
to their feature values and a given number of words with
large values are selected as representative features.

3.2 Benefit of Data Reduction

In our work, to save the labor cost of developers, the data
reduction for bug triage has two goals, 1) reducing the data
scale and 2) improving the accuracy of bug triage. In con-
trast to modeling the textual content of bug reports in exist-
ing work (e.g., [1], [12], [25]), we aim to augment the data
set to build a preprocessing approach, which can be applied
before an existing bug triage approach. We explain the two
goals of data reduction as follows.

3.2.1 Reducing the Data Scale

We reduce scales of data sets to save the labor cost of
developers.

Bug dimension. As mentioned in Section 2.1, the aim of
bug triage is to assign developers for bug fixing. Once a
developer is assigned to a new bug report, the developer
can examine historically fixed bugs to form a solution to the
current bug report [36], [64]. For example, historical bugs
are checked to detect whether the new bug is the duplicate
of an existing one [54]; moreover, existing solutions to bugs
can be searched and applied to the new bug [28]. Thus, we
consider reducing duplicate and noisy bug reports to
decrease the number of historical bugs. In practice, the labor
cost of developers (i.e., the cost of examining historical
bugs) can be saved by decreasing the number of bugs based
on instance selection.

Word dimension. We use feature selection to remove noisy
or duplicate words in a data set. Based on feature selection,
the reduced data set can be handled more easily by

automatic techniques (e.g., bug triage approaches) than the
original data set. Besides bug triage, the reduced data set
can be further used for other software tasks after bug triage
(e.g., severity identification, time prediction, and reopened-
bug analysis in Section 7.2).

3.2.2 Improving the Accuracy

Accuracy is an important evaluation criterion for bug tri-
age. In our work, data reduction explores and removes
noisy or duplicate information in data sets (see examples
in Section 2.2).

Bug dimension. Instance selection can remove uninforma-
tive bug reports; meanwhile, we can observe that the accu-
racy may be decreased by removing bug reports (see
experiments in Section 5.2.3).

Word dimension. By removing uninformative words, fea-
ture selection improves the accuracy of bug triage (see
experiments in Section 5.2.3). This can recover the accuracy
loss by instance selection.

4 PREDICTION FOR REDUCTION ORDERS

Based on Section 3.1, given an instance selection algorithm
IS and a feature selection algorithm FS, FS ! IS and IS !
FS are viewed as two orders for applying reducing techni-
ques. Hence, a challenge is how to determine the order of
reduction techniques, i.e., how to choose one between FS!
IS and IS ! FS. We refer to this problem as the prediction
for reduction orders.

4.1 Reduction Orders

To apply the data reduction to each new bug data set, we
need to check the accuracy of both two orders (FS ! IS and
IS!FS) and choose a better one. To avoid the time cost of
manually checking both reduction orders, we consider pre-
dicting the reduction order for a new bug data set based on
historical data sets.

As shown in Fig. 2c, we convert the problem of predic-
tion for reduction orders into a binary classification prob-
lem. A bug data set is mapped to an instance and the
associated reduction order (either FS ! IS or IS ! FS) is
mapped to the label of a class of instances. Fig. 3 summa-
rizes the steps of predicting reduction orders for bug triage.
Note that a classifier can be trained only once when facing
many new bug data sets. That is, training such a classifier
once can predict the reduction orders for all the new data
sets without checking both reduction orders. To date, the
problem of predicting reduction orders of applying feature
selection and instance selection has not been investigated in
other application scenarios.

From the perspective of software engineering, predict-
ing the reduction order for bug data sets can be viewed as

Fig. 3. Steps of predicting reduction orders for bug triage.
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a kind of software metrics, which involves activities for mea-
suring some property for a piece of software [16]. How-
ever, the features in our work are extracted from the bug
data set while the features in existing work on software
metrics are for individual software artifacts,3 e.g., an indi-
vidual bug report or an individual piece of code. In this
paper, to avoid ambiguous denotations, an attribute refers
to an extracted feature of a bug data set while a feature
refers to a word of a bug report.

4.2 Attributes for a Bug Data Set

To build a binary classifier to predict reduction orders, we
extract 18 attributes to describe each bug data set. Such
attributes can be extracted before new bugs are triaged. We
divide these 18 attributes into two categories, namely the
bug report category (B1 to B10) and the developer category
(D1 to D8).

In Table 2, we present an overview of all the attributes
of a bug data set. Given a bug data set, all these attributes
are extracted to measure the characteristics of the bug data
set. Among the attributes in Table 2, four attributes are
directly counted from a bug data set, i.e., B1, B2, D1, and
D4; six attributes are calculated based on the words in the
bug data set, i.e., B3, B4, D2, D3, D5, and D6; five attributes
are calculated as the entropy of an enumeration value to
indicate the distributions of items in bug reports, i.e., B6,
B7, B8, B9, and B10; three attributes are calculated accord-
ing to the further statistics, i.e., B5, D7, and D8. All the 18
attributes in Table 2 can be obtained by direct extraction or
automatic calculation. Details of calculating these attributes

can be found in Section S2 in the supplemental material,
available online.

5 EXPERIMENTS AND RESULTS

5.1 Data Preparation

In this part, we present the data preparation for applying
the bug data reduction. We evaluate the bug data reduction
on bug repositories of two large open source projects,
namely Eclipse and Mozilla. Eclipse [13] is a multi-language
software development environment, including an Inte-
grated Development Environment (IDE) and an extensible
plug-in system; Mozilla [33] is an Internet application suite,
including some classic products, such as the Firefox
browser and the Thunderbird email client. Up to December
31, 2011, 366,443 bug reports over 10 years have been
recorded to Eclipse while 643,615 bug reports over 12 years
have been recorded to Mozilla. In our work, we collect con-
tinuous 300,000 bug reports for each project of Eclipse and
Mozilla, i.e., bugs 1-300000 in Eclipse and bugs 300001-
600000 in Mozilla. Actually, 298,785 bug reports in Eclipse
and 281,180 bug reports in Mozilla are collected since some
of bug reports are removed from bug repositories (e.g., bug
5315 in Eclipse) or not allowed anonymous access (e.g., bug
40020 in Mozilla). For each bug report, we download web-
pages from bug repositories and extract the details of bug
reports for experiments.

Since bug triage aims to predict the developers who can
fix the bugs, we follow the existing work [1], [34] to remove
unfixed bug reports, e.g., the new bug reports or will-not-fix
bug reports. Thus, we only choose bug reports, which are
fixed and duplicate (based on the items status of bug
reports). Moreover, in bug repositories, several developers
have only fixed very few bugs. Such inactive developers

TABLE 2
An Overview of Attributes for a Bug Data Set

Index Attribute name Description

B1 # Bug reports Total number of bug reports.
B2 # Words Total number of words in all the bug reports.
B3 Length of bug reports Average number of words of all the bug reports.
B4 # Unique words Average number of unique words in each bug report.
B5 Ratio of sparseness Ratio of sparse terms in the text matrix. A sparse term refers to a

word with zero frequency in the text matrix.
B6 Entropy of severities Entropy of severities in bug reports. Severity denotes the importance

of bug reports.
B7 Entropy of priorities Entropy of priorities in bug reports. Priority denotes the level of bug

reports.
B8 Entropy of products Entropy of products in bug reports. Product denotes the sub-project.
B9 Entropy of components Entropy of components in bug reports. Component denotes the

sub-sub-project.
B10 Entropy of words Entropy of words in bug reports.

D1 # Fixers Total number of developers who will fix bugs.
D2 # Bug reports per fixer Average number of bug reports for each fixer.
D3 # Words per fixer Average number of words for each fixer.
D4 # Reporters Total number of developers who have reported bugs.
D5 # Bug reports per reporter Average number of bug reports for each reporter.
D6 # Words per reporter Average number of words for each reporter.
D7 # Bug reports by top 10 percent reporters Ratio of bugs, which are reported by the most active reporters.
D8 Similarity between fixers and reporters Similarity between the set of fixers and the set of reporters, defined as

the Tanimoto similarity.

3. In software metrics, a software artifact is one of many kinds of
tangible products produced during the development of software, e.g., a
use case, requirements specification, and a design document [16].
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may not provide sufficient information for predicting cor-
rect developers. In our work, we remove the developers,
who have fixed less than 10 bugs.

To conduct text classification, we extract the summary
and the description of each bug report to denote the con-
tent of the bug. For a newly reported bug, the summary
and the description are the most representative items,
which are also used in manual bug triage [1]. As the input
of classifiers, the summary and the description are con-
verted into the vector space model [4], [59]. We employ
two steps to form the word vector space, namely tokeni-
zation and stop word removal. First, we tokenize the
summary and the description of bug reports into word
vectors. Each word in a bug report is associated with its
word frequency, i.e., the times that this word appears in
the bug. Non-alphabetic words are removed to avoid the
noisy words, e.g., memory address like 0x0902f00 in bug
200220 of Eclipse. Second, we remove the stop words,
which are in high frequency and provide no helpful infor-
mation for bug triage, e.g., the word “the” or “about”. The
list of stop words in our work is according to SMART
information retrieval system [59]. We do not use the stem-
ming technique in our work since existing work [1], [12]
has examined that the stemming technique is not helpful
to bug triage. Hence, the bug reports are converted into
vector space model for further experiments.

5.2 Experiments on Bug Data Reduction

5.2.1 Data Sets and Evaluation

We examine the results of bug data reduction on bug reposi-
tories of two projects, Eclipse and Mozilla. For each project,
we evaluate results on five data sets and each data set is
over 10,000 bug reports, which are fixed or duplicate bug
reports. We check bug reports in the two projects and find
out that 45.44 percent of bug reports in Eclipse and
28.23 percent of bug reports in Mozilla are fixed or dupli-
cate. Thus, to obtain over 10,000 fixed or duplicate bug
reports, each data set in Eclipse is collected from continuous
20,000 bug reports while each bug set in Mozilla is collected
from continuous 40,000 bug reports. Table 3 lists the details
of ten data sets after data preparation.

To examine the results of data reduction, we employ
four instance selection algorithms (ICF, LVQ, DROP, and
POP), four feature selection algorithms (IG, CH, SU, and

RF), and three bug triage algorithms (Support Vector
Machine, SVM; K-Nearest Neighbor, KNN; and Naive
Bayes, which are typical text-based algorithms in existing
work [1], [3], [25]). Fig. 4 summarizes these algorithms. The
implementation details can be found in Section S3 in the
supplemental material, available online.

The results of data reduction for bug triage can be mea-
sured in two aspects, namely the scales of data sets and
the quality of bug triage. Based on Algorithm 1, the scales
of data sets (including the number of bug reports and the
number of words) are configured as input parameters.
The quality of bug triage can be measured with the accu-
racy of bug triage, which is defined as Accuracyk ¼
# correctly assigned bug reports in k candidates

# all bug reports in the test set . For each data set in
Table 3, the first 80 percent of bug reports are used as a
training set and the left 20 percent of bug reports are as a
test set. In the following of this paper, data reduction on a
data set is used to denote the data reduction on the train-
ing set of this data set since we cannot change the test set.

TABLE 3
Ten Data Sets in Eclipse and Mozilla

Fig. 4. Algorithms for instance selection, feature selection, and bug tri-
age. Among these algorithms, ICF, CH, and Naive Bayes are well-per-
formed based on the experiments of the bug data reduction.

Fig. 5. Accuracy for instance selection or feature selection on Eclipse
(DS-E1) and Mozilla (DS-M1). For instance selection, 30, 50, and 70 per-
cent of bug reports are selected while for feature selection, 10, 30, and
50 percent of words are selected. The origin denotes the results of Naive
Bayes without instance selection or feature selection. Note that some
curves of ICF may be overlapped since ICF cannot precisely set the rate
of final instances [8].
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5.2.2 Rates of Selected Bug Reports and Words

For either instance selection or feature selection algorithm,
the number of instances or features should be determined
to obtain the final scales of data sets. We investigate the
changes of accuracy of bug triage by varying the rate of
selected bug reports in instance selection and the rate of
selected words in feature selection. Taking two instance
selection algorithms (ICF and LVQ) and two feature selec-
tion algorithms (IG and CH) as examples, we evaluate
results on two data sets (DS-E1 in Eclipse and DS-M1 in
Mozilla). Fig. 5 presents the accuracy of instance selection
and feature selection (each value is an average of 10 inde-
pendent runs) for a bug triage algorithm, Naive Bayes.

For instance selection, ICF is a little better than LVQ from
Figs. 5a and 5c. A good percentage of bug reports is 50 or
70 percent. For feature selection, CH always performs better

than IG from Figs. 5b and 5d. We can find that 30 or 50 per-
cent is a good percentage of words. In the other experi-
ments, we directly set the percentages of selected bug
reports and words to 50 and 30 percent, respectively.

5.2.3 Results of Data Reduction for Bug Triage

We evaluate the results of data reduction for bug triage on
data sets in Table 3. First, we individually examine each
instance selection algorithm and each feature selection algo-
rithm based on one bug triage algorithm, Naive Bayes. Sec-
ond, we combine the best instance selection algorithm and
the best feature selection algorithm to examine the data
reduction on three text-based bug triage algorithms.

In Tables 4, 5, 6, and 7, we show the results of four
instance selection algorithms and four feature selection
algorithms on four data sets in Table 3, i.e., DS-E1, DS-E5,

TABLE 4
Accuracy (Percent) of IS and FS on DS-E1

List size Origin IS FS

ICF LVQ DROP POP IG CH SU RF

1 25.85 21.75 17.91 22.53 20.36 25.27 30.64 23.64 24.52
2 35.71 31.66 27.08 31.40 29.59 35.07 43.09 33.44 34.87
3 41.88 38.17 32.97 36.64 36.01 41.42 50.52 40.18 40.93
4 45.84 42.25 37.40 40.10 40.45 45.26 55.12 44.90 45.01
5 48.95 45.79 40.50 42.76 44.16 48.42 58.54 47.95 47.90

TABLE 6
Accuracy (Percent) of IS and FS on DS-M1

List size Origin IS FS

ICF LVQ DROP POP IG CH SU RF

1 10.86 9.46 19.10 11.06 21.07 10.80 20.91 17.53 11.01
2 27.29 22.39 27.70 27.77 29.13 27.08 35.88 30.37 27.26
3 37.99 33.23 33.06 36.33 32.81 37.77 44.86 38.66 37.27
4 44.74 39.60 36.99 41.77 38.82 44.43 50.73 44.35 43.95
5 49.11 44.68 40.01 44.56 42.68 48.87 55.50 48.36 48.33

TABLE 7
Accuracy (Percent) of IS and FS on DS-M5

List size Origin IS FS

ICF LVQ DROP POP IG CH SU RF

1 20.72 18.84 20.78 19.76 19.73 20.57 21.61 20.07 20.16
2 30.37 27.36 29.10 28.39 29.52 30.14 32.43 30.37 29.30
3 35.53 32.66 34.76 33.00 35.80 35.31 38.88 36.56 34.59
4 39.48 36.82 38.82 36.42 40.44 39.17 43.14 41.28 38.72
5 42.61 40.18 41.94 39.71 44.13 42.35 46.46 44.75 42.07

TABLE 5
Accuracy (Percent) of IS and FS on DS-E5

List size Origin IS FS

ICF LVQ DROP POP IG CH SU RF

1 23.58 19.60 18.85 18.38 19.66 22.92 32.71 24.55 21.81
2 31.94 28.23 26.24 25.24 27.26 31.35 44.97 34.30 30.45
3 37.02 33.64 31.17 29.85 31.11 36.35 51.73 39.93 35.80
4 40.94 37.58 34.78 33.56 36.28 40.25 56.58 44.20 39.70
5 44.11 40.87 37.72 37.02 39.91 43.40 60.40 47.76 42.99
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DS-M1, and DS-M5. The best results by instance selection
and the best results by feature selection are shown in bold.
Results by Naive Bayes without instance selection or fea-
ture selection are also presented for comparison. The size of
the recommendation list is set from 1 to 5. Results of the
other six data sets in Table 3 can be found in Section S5 in
the supplemental material, available online. Based on Sec-
tion 5.2.2, given a data set, IS denotes the 50 percent of bug
reports are selected and FS denotes the 30 percent of words
are selected.

As shown in Tables 4 and 5 for data sets in Eclipse, ICF
provides eight best results among four instance selection
algorithms when the list size is over two while either
DROP or POP can achieve one best result when the list
size is one. Among four feature selection algorithms, CH
provides the best accuracy. IG and SU also achieve good
results. In Tables 6 and 7 for Mozilla, POP in instance
selection obtains six best results; ICF, LVQ, and DROP
obtain one, one, two best results, respectively. In feature
selection, CH also provides the best accuracy. Based on
Tables 4, 5, 6, and 7, in the following of this paper, we
only investigate the results of ICF and CH and to avoid
the exhaustive comparison on all the four instance selec-
tion algorithms and four feature selection algorithms.

As shown in Tables 4, 5, 6, and 7, feature selection can
increase the accuracy of bug triage over a data set while
instance selection may decrease the accuracy. Such an
accuracy decrease is coincident with existing work ([8],
[20], [41], [52]) on typical instance selection algorithms on
classic data sets,4 which shows that instance selection may
hurt the accuracy. In the following, we will show that the
accuracy decrease by instance selection is caused by the
large number of developers in bug data sets.

To investigate the accuracy decrease by instance selec-
tion, we define the loss from origin to ICF as

Lossk ¼ Accuracyk by origin�Accuracyk by ICF
Accuracyk by origin , where the recom-

mendation list size is k. Given a bug data set, we sort
developers by the number of their fixed bugs in descend-
ing order. That is, we sort classes by the number of
instances in classes. Then a new data set with s develop-
ers is built by selecting the top-s developers. For one bug
data set, we build new data sets by varying s from 2 to
30. Fig. 6 presents the loss on two bug data sets (DS-E1
and DS-M1) when k ¼ 1 or k ¼ 3.

As shown in Fig. 6, most of the loss from origin to ICF
increases with the number of developers in the data sets. In
other words, the large number of classes causes the accu-
racy decrease. Let us recall the data scales in Table 3. Each
data set in our work contains over 200 classes. When apply-
ing instance selection, the accuracy of bug data sets in
Table 3 may decrease more than that of the classic data sets
in [8], [20], [41], [52] (which contain less than 20 classes and
mostly two classes).

In our work, the accuracy increase by feature selection
and the accuracy decrease by instance selection lead to the
combination of instance selection and feature selection. In
other words, feature selection can supplement the loss of
accuracy by instance selection. Thus, we apply instance

selection and feature selection to simultaneously reduce the
data scales. Tables 8 , 9, 10, and 11 show the combinations
of CH and ICF based on three bug triage algorithms, namely
SVM, KNN, and Naive Bayes, on four data sets.

As shown in Table 8, for the Eclipse data set DS-E1, ICF!
CH provides the best accuracy on three bug triage algorithms.
Among these algorithms,Naive Bayes can obtainmuch better
results than SVM and KNN. ICF! CH based on Naive Bayes
obtains the best results. Moreover, CH! ICF based on Naive
Bayes can also achieve good results, which are better than
Naive Bayes without data reduction. Thus, data reduction
can improve the accuracy of bug triage, especially, for the
well-performed algorithm,Naive Bayes.

In Tables 9, 10, and 11, data reduction can also
improve the accuracy of KNN and Naive Bayes. Both CH
! ICF and ICF ! CH can obtain better solutions than
the origin bug triage algorithms. An exceptional algo-
rithm is SVM. The accuracy of data reduction on SVM is
lower than that of the original SVM. A possible reason is
that SVM is a kind of discriminative model, which is not
suitable for data reduction and has a more complex
structure than KNN and Naive Bayes.

As shown in Tables 8, 9, 10, and 11, all the best results
are obtained by CH ! ICF or ICF ! CH based on Naive
Bayes. Based on data reduction, the accuracy of Naive
Bayes on Eclipse is improved by 2 to 12 percent and the
accuracy on Mozilla is improved by 1 to 6 percent Consid-
ering the list size 5, data reduction based on Naive Bayes
can obtain from 13 to 38 percent better results than that
based on SVM and can obtain 21 to 28 percent better
results than that based on KNN. We find out that data
reduction should be built on a well-performed bug triage
algorithm. In the following, we focus on the data reduction
on Naive Bayes.

In Tables 8, 9, 10, and 11, the combinations of instance
selection and feature selection can provide good accuracy
and reduce the number of bug reports and words of the bug
data. Meanwhile, the orders, CH! ICF and ICF! CH, lead
to different results. Taking the list size five as an example,
for Naive Bayes, CH ! ICF provides better accuracy than
ICF ! CH on DS-M1 while ICF ! CH provides better accu-
racy than CH! ICF on DS-M5.

In Table 12, we compare the time cost of data reduc-
tion with the time cost of manual bug triage on four

Fig. 6. Loss from origin to ICF on two data sets. The origin denotes the
bug triage algorithm, Naive Bayes. The x-axis is the number of develop-
ers in a new-built data set; the y-axis is the loss. The loss above zero
denotes the accuracy of ICF is lower than that of origin while the loss
below zero denotes the accuracy of ICF is higher than that of origin.

4. UCI Machine Learning Repository, http://archive.ics.uci.edu/
ml/.
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data sets. As shown in Table 12, the time cost of manual
bug triage is much longer than that of data reduction.
For a bug report, the average time cost of manual bug
triage is from 23 to 57 days. The average time of the
original Naive Bayes is from 88 to 139 seconds while the
average time of data reduction is from 298 to 1,558 sec-
onds. Thus, compared with the manual bug triage, data
reduction is efficient for bug triage and the time cost of
data reduction can be ignored.

In summary of the results, data reduction for bug triage
can improve the accuracy of bug triage to the original data
set. The advantage of the combination of instance selection
and feature selection is to improve the accuracy and to
reduce the scales of data sets on both the bug dimension
and the word dimension (removing 50 percent of bug
reports and 70 percent of words).

5.2.4 A Brief Case Study

The results in Tables 8, 9, 10, and 11 show that the order of
applying instance selection and feature selection can impact
the final accuracy of bug triage. In this part, we employ ICF
and CH with Naive Bayes to conduct a brief case study on
the data set DS-E1.

First, we measure the differences of reduced data set by
CH ! ICF and ICF ! CH. Fig. 7 illustrates bug reports and
words in the data sets by applying CH ! ICF and ICF !
CH. Although there exists an overlap between the data sets
by CH ! ICF and ICF ! CH, either CH ! ICF or ICF! CH
retains its own bug reports and words. For example, we can
observe that the reduced data set by CH ! ICF keeps 1,655
words, which have been removed by ICF ! CH; the
reduced data set by ICF ! CH keeps 2,150 words, which
have been removed by CH ! ICF. Such observation

TABLE 8
Accuracy (Percent) of Data Reduction on DS-E1

List size SVM KNN Naive Bayes

Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH

1 7.75 7.19 8.77 12.76 18.51 20.63 25.85 25.42 27.24
2 11.45 12.39 14.41 12.96 20.46 24.06 35.71 39.00 39.56
3 15.40 15.81 18.45 13.04 21.38 25.75 41.88 46.88 47.58
4 18.27 18.53 21.55 13.14 22.13 26.53 45.84 51.77 52.45
5 21.18 20.79 23.54 13.23 22.58 27.27 48.95 55.55 55.89

TABLE 9
Accuracy (Percent) of Data Reduction on DS-E5

List size SVM KNN Naive Bayes

Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH

1 6.21 5.05 5.83 14.78 19.11 22.81 23.58 27.93 28.81
2 10.18 7.77 8.99 15.09 21.21 25.85 31.94 40.16 40.44
3 12.87 10.27 11.19 15.34 22.21 27.29 37.02 47.92 47.19
4 16.21 12.19 13.12 15.45 22.85 28.13 40.94 52.91 52.18
5 18.14 14.18 14.97 15.55 23.21 28.61 44.11 56.25 55.51

TABLE 10
Accuracy (Percent) of Data Reduction on DS-M1

List size SVM KNN Naive Bayes

Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH

1 11.98 10.88 10.38 11.87 14.74 15.10 10.86 17.07 19.45
2 21.82 19.36 17.98 12.63 16.40 18.44 27.29 31.77 32.11
3 29.61 26.65 24.93 12.81 16.97 19.43 37.99 41.67 40.28
4 35.08 32.03 29.46 12.88 17.29 19.93 44.74 48.43 46.47
5 38.72 36.22 33.27 13.08 17.82 20.55 49.11 53.38 51.40

TABLE 11
Accuracy (Percent) of Data Reduction on DS-M5

List size SVM KNN Naive Bayes

Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH Origin CH!ICF ICF!CH

1 15.01 14.87 14.24 13.92 14.66 16.66 20.72 20.97 21.88
2 21.64 20.45 20.10 14.75 16.62 18.85 30.37 31.27 32.91
3 25.65 24.26 23.82 14.91 17.70 19.84 35.53 37.24 39.70
4 28.36 27.18 27.21 15.36 18.37 20.78 39.48 41.59 44.50
5 30.73 29.51 29.79 15.92 19.07 21.46 42.61 45.28 48.28
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indicates the orders of applying CH and ICF will brings dif-
ferent results for the reduced data set.

Second, we check the duplicate bug reports in the
data sets by CH ! ICF and ICF ! CH. Duplicate bug
reports are a kind of redundant data in a bug repository
[47], [54]. Thus, we count the changes of duplicate bug
reports in the data sets. In the original training set, there
exist 532 duplicate bug reports. After data reduction, 198
duplicate bug reports are removed by CH ! ICF while
262 are removed by ICF ! CH. Such a result indicates
that the order of applying instance selection and feature
selection can impact the ability of removing redundant
data.

Third, we check the blank bug reports during the data
reduction. In this paper, a blank bug report refers to a
zero-word bug report, whose words are removed by fea-
ture selection. Such blank bug reports are finally
removed in the data reduction since they provides none
of information. The removed bug reports and words can
be viewed as a kind of noisy data. In our work, bugs
200019, 200632, 212996, and 214094 become blank bug
reports after applying CH ! ICF while bugs 201171,
201598, 204499, 209473, and 214035 become blank bug
reports after ICF ! CH. There is no overlap between the
blank bug reports by CH ! ICF and ICF ! CH. Thus,
we find out that the order of applying instance selection
and feature selection also impacts the ability of removing
noisy data.

In summary of this brief case study on the data set in
Eclipse, the results of data reduction are impacted by the
order of applying instance selection and feature selection.
Thus, it is necessary to investigate how to determine the
order of applying these algorithms.

To further examine whether the results by CH ! ICF are
significantly different from those by ICF ! CH, we perform
a Wilcoxon signed-rank test [53] on the results by CH! ICF
and ICF ! CH on 10 data sets in Table 3. In details, we col-
lect 50 pairs of accuracy values (10 data sets; five recommen-
dation lists for each data set, i.e., the size from 1 to 5) by
applying CH ! ICF and ICF ! CH, respectively. The result
of test is with a statistically significant p-value of 0.018, i.e.,
applying CH ! ICF or ICF ! CH leads to significantly dif-
ferences for the accuracy of bug triage.

5.3 Experiments on Prediction for Reduction Orders

5.3.1 Data Sets and Evaluation

We present the experiments on prediction for reduction
orders in this part. We map a bug data set to an instance,
and map the reduction order (i.e., FS ! IS or IS ! FS.)
to its label. Given a new bug data set, we train a classifier
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Fig. 7. Bug reports and words in the data set DS-E1 (i.e., bugs 200001-
220000 in Eclipse) by applying CH! ICF and ICF! CH.
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to predict its appropriate reduction order based on his-
torical bug data sets.

As shown in Fig. 2c, to train the classifier, we label
each bug data set with its reduction order. In our work,
one bug unit denotes 5,000 continuous bug reports. In Sec-
tion 5.1, we have collected 298,785 bug reports in Eclipse
and 281,180 bug reports in Mozilla. Then, 60 bug units
(298;785=5;000 ¼ 59:78) for Eclipse and 57 bug units
(281;180=5;000 ¼ 56:24) for Mozilla are obtained. Next, we
form bug data sets by combining bug units to training
classifiers. In Table 13, we show the setup of data sets in
Eclipse. Given 60 bug units in Eclipse, we consider contin-
uous one to five bug units as one data set. In total, we col-
lect 300 (60� 5) bug data sets on Eclipse. Similarly, we
consider continuous one to seven bug units as one data
set on Mozilla and finally collect 399 (57� 7) bug data
sets. For each bug data set, we extract 18 attributes
according to Table 2 and normalize all the attributes to
values between 0 and 1.

We examine the results of prediction of reduction orders
on ICF and CH. Given ICF and CH, we label each bug data
set with its reduction order (i.e., CH ! ICF or ICF ! CH).
First, for a bug data set, we respectively obtain the results of
CH ! ICF and ICF ! CH by evaluating data reduction for
bug triage based on Section 5.2. Second, for a recommenda-
tion list with size 1 to 5, we count the times of each reduc-
tion order when the reduction order obtain the better
accuracy. That is, if CH ! ICF can provide more times of
the better accuracy, we label the bug data set with CH !
ICF, and verse vice.

Table 14 presents the statistics of bug data sets of
Eclipse and Mozilla. Note that the numbers of data sets
with CH ! ICF and ICF ! CH are imbalance. In our
work, we employ the classifier AdaBoost to predict
reduction orders since AdaBoost is useful to classify
imbalanced data and generates understandable results of
classification [24].

In experiments, 10-fold cross-validation is used to evalu-
ate the prediction for reduction orders. We employ four
evaluation criteria, namely precision, recall, F1-measure,
and accuracy. To balance the precision and recall, the F1-
measure is defined as F1 ¼ 2�Recall�Precision

RecallþPrecision . For a good classi-
fier, F1CH!ICF

and F1ICF!CH
should be balanced to avoid clas-

sifying all the data sets into only one class. The accuracy
measures the percentage of correctly predicted orders over
the total bug data sets. The accuracy is defined as
Accuracy ¼ #correctly predicted lorders

#all data sets .

5.3.2 Results

We investigate the results of predicting reductions orders
for bug triage on Eclipse and Mozilla. For each project, we
employ AdaBoost as the classifier based on two strategies,
namely resampling and reweighting [17]. A decision tree
classifier, C4.5, is embedded into AdaBoost. Thus, we com-
pare results of classifiers in Table 15.

In Table 15, C4.5, AdaBoost C4.5 resampling, and
AdaBoost C4.5 reweighting, can obtain better values of
F1-measure on Eclipse and AdaBoost C4.5 reweighting
obtains the best F1-measure. All the three classifiers can
obtain good accuracy and C4.5 can obtain the best accu-
racy. Due to the imbalanced number of bug data sets,
the values of F1-measure of CH ! ICF and ICF ! CH
are imbalanced. The results on Eclipse indicate that
AdaBoost with reweighting provides the best results
among these three classifiers.

For the other project, Mozilla in Table 15, AdaBoost
with resampling can obtain the best accuracy and F1-mea-
sure. Note that the values of F1-measure by CH ! ICF
and ICF ! CH on Mozilla are more balanced than those
on Eclipse. For example, when classifying with AdaBoost
C4.5 reweighting, the difference of F1-measure on Eclipse
is 69.7 percent (85:8%� 16:1%) and the difference on
Mozilla is 30.8 percent (70:5%� 39:7%). A reason for this
fact is that the number of bug data sets with the order
ICF ! CH in Eclipse is about 5.67 times (255=45) of that

TABLE 13
Setup of Data Sets in Eclipse

TABLE 15
Results on Predicting Reduction Orders (Percent)

Project Classifier CH!ICF ICF!CH Accuracy

Precision Recall F1 Precision Recall F1

Eclipse C4.5 13.3 4.4 6.7 84.9 94.9 89.6 81.3
AdaBoost C4.5 resampling 14.7 11.1 12.7 85.0 88.6 86.8 77.0
AdaBoost C4.5 reweighting 16.7 15.6 16.1 85.3 86.3 85.8 75.7

Mozilla C4.5 48.0 29.9 36.9 63.5 78.9 70.3 59.6
AdaBoost C4.5 resampling 52.7 56.1 54.3 70.3 67.4 68.8 62.9
AdaBoost C4.5 reweighting 49.5 33.1 39.7 64.3 78.1 70.5 60.4

TABLE 14
Data Sets of Prediction for Reduction Orders

Project # Data sets # CH!ICF # ICF!CH

Eclipse 300 45 255
Mozilla 399 157 242
Eclipse & Mozilla 699 202 497
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with CH ! ICF while in Mozilla, the number of bug
data sets with ICF ! CH is 1.54 times (242=157) of that
with CH ! ICF.

The number of bug data sets on either Eclipse (300 data
sets) or Mozilla (399 data sets) is small. Since Eclipse and
Mozilla are both large-scale open source projects and share
the similar style in development [64], we consider combin-
ing the data sets of Eclipse and Mozilla to form a large
amount of data sets. Table 16 shows the results of predicting
reduction orders on totally 699 bug data sets, including 202
data sets with CH ! ICF and 497 data sets with ICF ! CH.
As shown in Table 16, the results of three classifiers are very
close. Each of C4.5, AdaBoost C4.5 resampling and Ada-
Boost C4.5 reweighting can provide good F1-measure and
accuracy. Based on the results of these 699 bug data sets in
Table 16, AdaBoost C4.5 reweighting is the best one among
these three classifiers.

As shown in Tables 15 and 16, we can find out that it is
feasible to build a classifier based on attributes of bug data
sets to determine using CH ! ICF or ICF ! CH. To investi-
gate which attribute impacts the predicted results, we
employ the top node analysis to further check the results by
AdaBoost C4.5 reweighting in Table 16. Top node analysis is
a method to rank representative nodes (e.g., attributes in
prediction for reduction orders) in a decision tree classifier
on software data [46].

In Table 17, we employ the top node analysis to pres-
ent the representative attributes when predicting the
reduction order. The level of a node denotes the distance
to the root node in a decision tree (Level 0 is the root
node); the frequency denotes the times of appearing in
one level (the sum of 10 decision trees in 10-fold cross-
validation). In Level 0, i.e., the root node of decision
trees, attributes B3 (Length of bug reports) and D3 (#
Words per fixer) appear for two times. In other words,
these two attributes are more decisive than the other
attributes to predict the reduction orders. Similarly, B6,
D1, B3, and B4 are decisive attributes in Level 1. By
checking all the three levels in Table 17, the attribute B3
(Length of bug reports) appears in all the levels. This fact
indicates that B3 is a representative attribute when pre-
dicting the reduction order. Moreover, based on the anal-
ysis in Table 17, no attribute dominates all the levels. For
example, each attribute in Level 0 contributes to the fre-
quency with no more than 2 and each attribute in Level
1 contributes to no more than 3. The results in the top
node analysis indicate that only one attribute cannot
determine the prediction of reduction orders and each
attribute is helpful to the prediction.

6 DISCUSSION

In this paper, we propose the problem of data reduction for
bug triage to reduce the scales of data sets and to improve
the quality of bug reports. We use techniques of instance
selection and feature selection to reduce noise and redun-
dancy in bug data sets. However, not all the noise and
redundancy are removed. For example, as mentioned in
Section 5.2.4, only less than 50 percent of duplicate bug
reports can be removed in data reduction (198=532 ¼ 37:2%
by CH ! ICF and 262=532 ¼ 49:2% by ICF ! CH). The rea-
son for this fact is that it is hard to exactly detect noise and
redundancy in real-world applications. On one hand, due
to the large scales of bug repositories, there exist no ade-
quate labels to mark whether a bug report or a word
belongs to noise or redundancy; on the other hand, since all
the bug reports in a bug repository are recorded in natural
languages, even noisy and redundant data may contain use-
ful information for bug fixing.

In our work, we propose the data reduction for bug
triage. As shown in Tables 4, 5, 6, and 7, although a recom-
mendation list exists, the accuracy of bug triage is not good
(less than 61 percent). This fact is caused by the complexity
of bug triage. We explain such complexity as follows. First,
in bug reports, statements in natural languages may be hard

TABLE 16
Results on Predicting Reduction Orders by Combining Bug

Data Sets on Eclipse and Mozilla (Percent)

Classifier CH!ICF ICF!CH Accuracy

Precision Recall F1 Precision Recall F1

C4.5 49.5 50.5 50.0 79.7 79.1 79.4 70.8
AdaBoost C4.5 resampling 49.4 40.1 44.3 77.4 83.3 80.2 70.8
AdaBoost C4.5 reweighting 51.3 48.0 49.6 79.4 81.5 80.4 71.8

TABLE 17
Top Node Analysis of Predicting Reduction Orders

Levela Frequency Index Attribute name

0 2 B3 Length of bug reports
2 D3 # Words per fixer

1 3 B6 Entropy of severity
3 D1 # Fixers

2 B3 Length of bug reports
2 B4 # Unique words

2 4 B6 Entropy of severity

3 B7 Entropy of priority
3 B9 Entropy of component

2 B3 Length of bug reports
2 B4 # Unique words
2 B5 Ratio of sparseness
2 B8 Entropy of product
2 D5 # Bug reports per

reporter
2 D8 Similarity between

fixers and reporters

aOnly nodes in Level 0 to Level 2 of decision trees are presented. In each level,
we omit an attribute if its frequency equals to 1.
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to clearly understand; second, there exist many potential
developers in bug repositories (over 200 developers based
on Table 3); third, it is hard to cover all the knowledge of
bugs in a software project and even human triagers may
assign developers by mistake. Our work can be used to
assist human triagers rather than replace them.

In this paper, we construct a predictive model to deter-
mine the reduction order for a new bug data set based on
historical bug data sets. Attributes in this model are statistic
values of bug data sets, e.g., the number of words or the
length of bug reports. No representative words of bug data
sets are extracted as attributes. We plan to extract more
detailed attributes in future work.

The values of F1-measure and accuracy of prediction for
reduction orders are not large enough for binary classifiers.
In our work, we tend to present a resolution to determine
the reduction order of applying instance selection and fea-
ture selection. Our work is not an ideal resolution to the pre-
diction of reduction orders and can be viewed as a step
towards the automatic prediction. We can train the predic-
tive model once and predict reduction orders for each new
bug data set. The cost of such prediction is not expensive,
compared with trying all the orders for bug data sets.

Another potential issue is that bug reports are not
reported at the same time in real-world bug repositories. In
our work, we extract attributes of a bug data set and con-
sider that all the bugs in this data set are reported in certain
days. Compared with the time of bug triage, the time range
of a bug data set can be ignored. Thus, the extraction of
attributes from a bug data set can be applied to real-world
applications.

7 RELATED WORK

In this section, we review existing work on modeling bug
data, bug triage, and the quality of bug data with defect
prediction.

7.1 Modeling Bug Data

To investigate the relationships in bug data, Sandusky et al.
[45] form a bug report network to examine the dependency
among bug reports. Besides studying relationships among
bug reports, Hong et al. [23] build a developer social net-
work to examine the collaboration among developers based
on the bug data in Mozilla project. This developer social net-
work is helpful to understand the developer community
and the project evolution. By mapping bug priorities to
developers, Xuan et al. [57] identify the developer prioriti-
zation in open source bug repositories. The developer prior-
itization can distinguish developers and assist tasks in
software maintenance.

To investigate the quality of bug data, Zimmermann et al.
[64] design questionnaires to developers and users in three
open source projects. Based on the analysis of question-
naires, they characterize what makes a good bug report and
train a classifier to identify whether the quality of a bug
report should be improved. Duplicate bug reports weaken
the quality of bug data by delaying the cost of handling
bugs. To detect duplicate bug reports, Wang et al. [54]
design a natural language processing approach by matching
the execution information; Sun et al. [47] propose a

duplicate bug detection approach by optimizing a retrieval
function on multiple features.

To improve the quality of bug reports, Breu et al. [9] have
manually analyzed 600 bug reports in open source projects
to seek for ignored information in bug data. Based on the
comparative analysis on the quality between bugs and
requirements, Xuan et al. [55] transfer bug data to require-
ments databases to supplement the lack of open data in
requirements engineering.

In this paper, we also focus on the quality of bug data. In
contrast to existing work on studying the characteristics of
data quality (e.g., [9], [64]) or focusing on duplicate bug
reports (e.g., [47], [54]), our work can be utilized as a prepro-
cessing technique for bug triage, which both improves data
quality and reduces data scale.

7.2 Bug Triage

Bug triage aims to assign an appropriate developer to fix a
new bug, i.e., to determine who should fix a bug. �Cubrani�c
andMurphy [12] first propose the problem of automatic bug
triage to reduce the cost of manual bug triage. They apply
text classification techniques to predict related developers.
Anvik et al. [1] examine multiple techniques on bug triage,
including data preparation and typical classifiers. Anvik and
Murphy [3] extend abovework to reduce the effort of bug tri-
age by creating development-oriented recommenders.

Jeong et al. [25] find out that over 37 percent of bug
reports have been reassigned in manual bug triage. They
propose a tossing graph method to reduce reassignment in
bug triage. To avoid low-quality bug reports in bug triage,
Xuan et al. [56] train a semi-supervised classifier by combin-
ing unlabeled bug reports with labeled ones. Park et al. [40]
convert bug triage into an optimization problem and pro-
pose a collaborative filtering approach to reducing the bug-
fixing time.

For bug data, several other tasks exist once bugs are
triaged. For example, severity identification [30] aims to
detect the importance of bug reports for further schedul-
ing in bug handling; time prediction of bugs [61] models
the time cost of bug fixing and predicts the time cost of
given bug reports; reopened-bug analysis [46], [63] iden-
tifies the incorrectly fixed bug reports to avoid delaying
the software release.

In data mining, the problem of bug triage relates to
the problems of expert finding (e.g., [6], [50]) and ticket rout-
ing (e.g., [35], [44]). In contrast to the broad domains in
expert finding or ticket routing, bug triage only focuses on
assign developers for bug reports. Moreover, bug reports in
bug triage are transferred into documents (not keywords in
expert finding) and bug triage is a kind of content-based
classification (not sequence-based in ticket routing).

7.3 Data Quality in Defect Prediction

In our work, we address the problem of data reduction for
bug triage. To our knowledge, no existing work has inves-
tigated the bug data sets for bug triage. In a related prob-
lem, defect prediction, some work has focused on the data
quality of software defects. In contrast to multiple-class
classification in bug triage, defect prediction is a binary-
class classification problem, which aims to predict whether
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a software artifact (e.g., a source code file, a class, or a
module) contains faults according to the extracted features
of the artifact.

In software engineering, defect prediction is a kind of
work on software metrics. To improve the data quality,
Khoshgoftaar et al. [26] and Gao et al. [21] examine the
techniques on feature selection to handle imbalanced
defect data. Shivaji et al. [49] proposes a framework to
examine multiple feature selection algorithms and
remove noise features in classification-based defect pre-
diction. Besides feature selection in defect prediction,
Kim et al. [29] present how to measure the noise resis-
tance in defect prediction and how to detect noise data.
Moreover, Bishnu and Bhattacherjee [7] process the
defect data with quad tree based k-means clustering to
assist defect prediction.

In this paper, in contrast to the above work, we address
the problem of data reduction for bug triage. Our work can
be viewed as an extension of software metrics. In our work,
we predict a value for a set of software artifacts while exist-
ing work in software metrics predict a value for an individ-
ual software artifact.

8 CONCLUSIONS

Bug triage is an expensive step of software maintenance in
both labor cost and time cost. In this paper, we combine fea-
ture selection with instance selection to reduce the scale of
bug data sets as well as improve the data quality. To deter-
mine the order of applying instance selection and feature
selection for a new bug data set, we extract attributes of
each bug data set and train a predictive model based on his-
torical data sets. We empirically investigate the data reduc-
tion for bug triage in bug repositories of two large open
source projects, namely Eclipse and Mozilla. Our work pro-
vides an approach to leveraging techniques on data process-
ing to form reduced and high-quality bug data in software
development and maintenance.

In future work, we plan on improving the results of data
reduction in bug triage to explore how to prepare a high-
quality bug data set and tackle a domain-specific software
task. For predicting reduction orders, we plan to pay efforts
to find out the potential relationship between the attributes
of bug data sets and the reduction orders.
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