
Nopol: Automatic Repair of Conditional
Statement Bugs in Java Programs

Jifeng Xuan,Member, IEEE, Matias Martinez, Favio DeMarco, Maxime Cl�ement,

Sebastian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus,Member, IEEE

Abstract—We propose NOPOL, an approach to automatic repair of buggy conditional statements (i.e., if-then-else statements).

This approach takes a buggy program as well as a test suite as input and generates a patch with a conditional expression as output.

The test suite is required to contain passing test cases to model the expected behavior of the program and at least one failing test case

that reveals the bug to be repaired. The process of NOPOL consists of three major phases. First, NOPOL employs angelic fix localization to

identify expected values of a condition during the test execution. Second, runtime trace collection is used to collect variables and their

actual values, including primitive data types and objected-oriented features (e.g., nullness checks), to serve as building blocks for patch

generation. Third, NOPOL encodes these collected data into an instance of a Satisfiability Modulo Theory (SMT) problem; then a feasible

solution to the SMT instance is translated back into a code patch. We evaluate NOPOL on 22 real-world bugs (16 bugs with buggy IF

conditions and six bugs with missing preconditions) on two large open-source projects, namely Apache Commons Math and Apache

Commons Lang. Empirical analysis on these bugs shows that our approach can effectively fix bugs with buggy IF conditions and

missing preconditions. We illustrate the capabilities and limitations of NOPOL using case studies of real bug fixes.

Index Terms—Automatic repair, patch generation, SMT, fault localization

Ç

1 INTRODUCTION

AUTOMATIC software repair aims to automatically fix
bugs in programs. Different kinds of techniques are

proposed for automatic repair, including patch generation
[1], [2] and dynamic program state recovery [3], [4].

A family of techniques has been developed around the
idea of “test-suite based repair” [1]. The goal of test-suite
based repair is to generate a patch that makes failing test
cases pass and keeps the other test cases satisfied. Recent
test-suite based repair approaches include the work by
Le Goues et al. [1], Nguyen et al. [5], Kim et al. [6].

In recent work [7], we have shown that IF conditions
are among the most error-prone program elements in Java
programs. In our dataset, we observed that 12.5 percent
of one-change commits simply update an IF condition. This
motivates us to study the automatic repair of conditional state-
ments in real-world bugs.

In this paper, we present a novel automatic repair system
called NOPOL.1 This system fixes conditional bugs in object-
oriented programs and is evaluated on real bugs from
large-scale open-source programs. For instance, NOPOL can
synthesize a patch that updates a buggy IF condition as
shown in Fig. 1 or adds a guard precondition as in Fig. 2.
Both figures are excerpts of real-world bugs taken from the
bug tracking system of Apache Commons Math.

NOPOL takes a buggy program as well as a test suite as
input and generates a conditional patch as output. This test
suite must contain at least one failing test case that embodies
the bug to be repaired. Then, NOPOL analyzes program state-
ments that are executed by failing test cases to identify the
source code locations where a patchmay be needed.

For each statement, the process of generating the patch
consists of three major phases. First, we detect whether there
exists a fix location for a potential patch in this statement
with a new and scalable technique called “angelic fix local-
ization” (Section 3.2). For one fix location, this technique
reveals angelic values, whichmake all failing test cases pass.

Second, NOPOL collects runtime traces from test suite
execution through code instrumentation (Section 3.3).
These traces contain snapshots of the program state at all
candidate fix locations. The collected trace consists of both
primitive data types (e.g., integers and booleans) and
object-oriented data (e.g., nullness or object states obtained
from method calls).

Third, given the runtime traces, the problem of synthesiz-
ing a new conditional expression thatmatches the angelic val-
ues is translated into a Satisfiability Modulo Theory (SMT)
problem (Section 3.4). Our encoding extends the technique by

� J. Xuan is with the State Key Lab of Software Engineering, School of
Computer, Wuhan University, Wuhan 430072, China.
E-mail: jxuan@whu.edu.cn.

� M. Martinez is with the Faculty of Informatics, University of Lugano,
Lugano, Switzerland. E-mail: matias.sebastian.martinez@usi.ch.

� F. DeMarco and S. LamelasMarcote are with the University of Buenos Aires,
Buenos Aires 1198, Argentina. E-mail: faviod@gmail.com, srlm@gmx.com.

� M. Cl�ement and T. Durieux are with the Department of Computer Science,
University of Lille, Lille, France.
E-mail: maxime.clement@etudiant.univ-lille1.fr, thomas.durieux@inria.fr.

� D. Le Berre is with the University of Artois & CNRS, Lens, France.
E-mail: leberre@cril.fr.

� M. Monperrus is with the University of Lille & INRIA, Lille, France.
E-mail: martin.monperrus@univ-lille1.fr.

Manuscript received 9 July 2015; revised 19 Feb. 2016; accepted 6 Mar. 2016.
Date of publication 28 Apr. 2016; date of current version 16 Jan. 2017.
Recommended for acceptance by A. Roychoudhury.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2560811

1. NOPOL is an abbreviation for “no polillas” in Spanish, which liter-
ally means “no moth anymore”.

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Jha et al. [8] by handling rich object-oriented data. We use our
own implementation of the encoding together with an off-
the-shelf SMT solver (Z3 [9]) to check whether there exists a
solution.

If such a solution exists, NOPOL translates it back to source
code, i.e., generates a patch. We re-run the whole test suite
to validate whether this patch is able to make all test cases
pass and indeed repairs the bug under consideration.

To evaluate and analyze our repair approach NOPOL, we
collect a dataset of 22 bugs (16 bugs with buggy IF condi-
tions and six bugs with missing preconditions) from real-
world projects. Our result shows that 17 out of 22 bugs can
be fixed by NOPOL, including four bugs with manually
added test cases. Four case studies are conducted to present
the benefits of generating patches via NOPOL and five bugs
are employed to explain the limitations.

The main contributions of this paper are as follows:

� The design of a repair approach for fixing condi-
tional statement bugs of the form of buggy IF condi-
tions and missing preconditions.

� Two algorithms of angelic fix localization for identi-
fying potential fix locations and expected values.

� An extension of the SMT encoding in [8] for handling
nullness and certain method calls of object-oriented
programs.

� An evaluation on a dataset of 22 bugs in real-world
programs with an average of 25 K executable lines of
code for each bug.

� A publicly-available system for supporting further
replication and research.

� An analysis of the repair results with respect to fault
localization.

This paper is an extension of our previous work [10]. This
extension adds an evaluation on a real-world bug dataset,
four detailed case studies, a discussion of the limitations of
our approach, and a detailed analysis on patches.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background of test-suite based repair. Sec-
tion 3 presents our approach for repairing bugs with buggy IF

conditions and missing preconditions. Section 4 details the
evaluation on 22 real-world bugs. Section 5 further analyzes
the repair results. Section 6 presents potential issues and Sec-
tion 7 lists the relatedwork. Section 8 concludes.

2 BACKGROUND

We present the background on test-suite based repair and
the two kinds of bugs targeted in this paper.

2.1 Test-Suite Based Repair

Test-suite based repair consists in repairing programs
according to a test suite, which contains both passing test

cases as a specification of the expected behavior of the pro-
gram and at least one failing test case as a specification of
the bug to be repaired. Failing test cases can either identify
a regression bug or reveal a new bug that has just been dis-
covered. Then, a repair algorithm searches for patches that
make all the test cases pass.

The core assumption of test-suite based repair is that the
test suite is good enough to thoroughly model the program
to repair [11]. This is a case when the development process
ensures a very strong programming discipline. For exam-
ple, most commits of Apache projects (e.g., Apache Com-
mons Lang) contain a test case specifying the change. If a
commit is a bug fix, the commit contains a test case that
highlights the bug and fails before the fix.

Test-suite based repair, which has been popularized by the
work of GenProg by Le Goues et al. [1], has become an
actively explored research area [5], [6], [12], [13], [14]. The
approach presented in this paper, NOPOL, is also an approach
to test-suite based repair. Other kinds of repair methods
include repair based on formal models [15] and dynamic
repair of the program state [3].

2.2 Buggy IF Condition Bugs

Conditional statements (e.g., if (condition){...}

else {...}), are widely-used in programming languages.
Pan et al. [16] show that among seven studied Java projects,
up to 18.6 percent of bug fixes have changed a buggy condi-
tion in IF statements. A buggy IF condition is defined as a
bug in the condition of an if-then-else statement.

The bug in Fig. 1 is a real example of a buggy IF condition
in Apache Commons Math. This bug is a code snippet of
a method that calculates the greatest common divisor
between two integers. The condition in that method is to
check whether either of two parameters u and v is equal to
0. In the buggy version, the developer compares the product
of the two integers to zero. However, this may lead to an
arithmetic overflow. A safe way to proceed is to compare
each parameter to zero. This bug was fixed by NOPOL (see
Bug CM5 in Table 2).

2.3 Missing Precondition Bugs

Another class of common bugs related conditions is the
class of missing preconditions. A precondition aims to
check the state of certain variables before the execution of a
statement. Examples of common preconditions include
detecting a null pointer or an invalid index in an array. In
software repositories, we can find commits that add precon-
ditions (i.e., which were previously missing).

The bug in Fig. 2 is a missing precondition with the
absence of null pointer detection. The buggy version with-
out the precondition throws an exception signaling a null
pointer at runtime. NOPOL fixed this bug by adding the pre-
condition (see Bug PM2 in Table 2).

Fig. 1. Patch example of Bug CM5: a bug related to a buggy IF condition.
The original condition with a comparison with == is replaced by a disjunc-
tion between two comparisons.

Fig. 2. Patch example of Bug PM2: a precondition is added to avoid a null
dereference.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 35

3 OUR APPROACH

This section presents our approach to automatically repair-
ing buggy IF conditions and missing preconditions. Our
approach is implemented in a tool called NOPOL that repairs
Java code.

3.1 Overview

NOPOL is a repair approach, which is dedicated to buggy IF

conditions and missing preconditions. As input, NOPOL

requires a test suite which represents the expected program
functionality with at least one failing test case that exposes
the bug to be fixed. Given a buggy program and its test
suite, NOPOL returns the final patch as output. Figs. 1 and 2
are two examples of output patches for buggy IF conditions
and missing preconditions by NOPOL, respectively.

How to use NOPOL . From a user perspective, given a
buggy program with a test suite, including failing test cases,
the user would run NOPOL and obtain a patch, if any. Before
applying NOPOL to the buggy program, the user does not
need to know whether the bug relates to conditions. Instead,
the user runs NOPOL for any buggy program. If NOPOL finds
a patch, then the user would manually inspect and validate
it before the integration in the code base. As further discus-
sion in Section 4.4, the user can also add a pre-defined time-
out, e.g., 90 seconds as suggested in experiments or a longer
timeout like five hours instead of exhaustively exploring the
search space.

Fig. 3 shows the overview of NOPOL. NOPOL employs a
fault localization technique to rank statements according to
their suspiciousness of containing bugs. For each statement
in the ranking, NOPOL considers it as a buggy IF condition
candidate if the statement is an IF statement; or NOPOL con-
siders it as a missing precondition candidate if the state-
ment is any other non-branch or non-loop statement (e.g.,
an assignment or a method call). NOPOL processes candidate
statements one by one with three major phases.

First, in the phase of angelic fix localization, NOPOL arbi-
trarily tunes a conditional value (true or false) of an IF

statement to pass a failing test case. If such a conditional
value exists, the statement is identified as a fix location
and the arbitrary value is viewed as the expected behavior

of the patch. In NOPOL, there are two kinds of fix locations,
IF statements for repairing buggy conditions and arbitrary
statements for repairing missing preconditions.

Second, in the phase of runtime trace collection, NOPOL

runs the whole test suite in order to collect the execution
context of each fix location. The context includes both varia-
bles of primitive types (e.g., booleans or integers) and a sub-
set of object-oriented features (nullness and certain method
calls); then such runtime collection will be used in synthe-
sizing the patch in the next phase.

Third, in the phase of patch synthesis, the collected trace is
converted into a Satisfiability Modulo Theory formula. The
satisfiability of SMT implies that there exists a program
expression that preserves the program behavior and fixes
the considered bug. That is, the expression makes all test
cases pass. If the SMT formula is satisfiable, the solution to
the SMT is translated as a source code patch; if unsatisfiable,
NOPOL goes to the next statement in the statement ranking,
until all statements are processed.

After the above three phases, the whole test suite is re-exe-
cuted to validate that the patch is correct. This validation
could be skipped if the SMT encoding is proven to be correct.
Indeed, theoretically, if the SMT solver says “satisfiable”, it
means that a patch exists. However, there could be an imple-
mentation bug in the trace collection, in the SMT problem
generation, in the off-the-shelf SMT solver, or in the patch
synthesis. Consequently, we do make the final validation by
re-executing the test suite.

3.2 Angelic Fix Localization

In NOPOL, we propose to use value replacement [17] to detect
potential fix locations. Value replacement [17] comes from
fault localization research. It consists in replacing at runtime
one value by another one. More generally, the idea is to artifi-
cially change the program state for localizing faults. There are
a couple of papers that explore this idea. For instance, Zhang
et al. [18] use the term “predicate switching” and Chandra et
al. [19] use the term “angelic debugging”.

NOPOL replaces conditional values in IF statements.
We refer to conditional values that make test cases pass as
angelic values.

Definition (angelic value). An angelic value is an arbi-
trarily-set value at a given location during test execution,
which enables a failing test case to pass.

To facilitate the description of our approach, we follow
existing work [20] to introduce the concept of locations.
A location is an integer value, which identifies the absolute
position of a statement in source code.

Definition (angelic tuple). An angelic tuple is a triplet
ðloc; val; testÞ, where the statement at a location loc is evalu-
ated to a value val to make a failing test case test pass.

In this paper, we refer to the technique of modifying the
program state to find the values for angelic tuples ðloc; val;
testÞ as angelic fix localization. If an angelic tuple ðloc; val; testÞ
is found, there may exist a patch in the location loc in source
code. In the phase of angelic fix localization, only failing test
cases are needed, not thewhole test suite.

A single test case test may evaluate the statement at the
location loc several times. Consequently, according to our
definition, the value val is fixed across all evaluations of a
given statement for one test case. This is the key point for
having a tractable search space (will be discussed in Section

Fig. 3. Overview of the proposed automatic repair approach, NOPOL.

36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

3.2.3). On the other hand, one angelic value is specific to a
test case: for a given location loc, different failing test cases
may have different angelic values.

3.2.1 For Buggy IF Conditions

For buggy IF conditions, angelic fix localization works as fol-
lows. For each IF condition that is evaluated during test suite
execution, an angel forces the IF condition to be true or
false in a failing test case. An angelic tuple ðloc; val; testÞ,
i.e., (IF condition location, boolean value, failing test case),
indicates that a fix modifying this IF condition may exist
(if the subsequent phase of patch synthesis succeeds, see
Section 3.4).

Algorithm 1 is the pseudo-code of angelic fix localization
for buggy IF conditions. For a given IF statement stmt and its
condition cond, both true and false are set to pass origi-
nally failing test cases at runtime. Lines 4 to 9 and Lines 10
to 15 describe how to set cond to be true and false,
respectively. If all failing test cases are passed, angelic
tuples are collected, i.e., Lines 17 to 22, for further patch syn-
thesis; otherwise, there exists no angelic value for the test
case and the location under consideration. The same idea of
forcing the execution can be used to identify angelic values
for loop conditions [21].

Algorithm 1. Angelic Fix Localization Algorithm for
Buggy IF Conditions

Input:
stmt, a candidate IF statement;
Tf , a set of failing test cases.
Output:
R, a set of angelic tuples.

1 R ;;
2 Initialize two sets Ttrue ; and Tfalse ;;
3 Let cond be the condition in stmt and let loc be the location

of cond;
4 Force cond to true and execute test cases in Tf ;
5 foreach failing test case ti 2 Tf do
6 if ti passes then
7 Ttrue Ttrue [ftig;
8 end
9 end
10 Force cond to false and execute test cases in Tf ;
11 foreach failing test case ti 2 Tf do
12 if ti passes then
13 Tfalse Tfalse [ftig;
14 end
15 end
//All test cases in Tf are passed

16 if ðTf n TtrueÞ \ ðTf n TfalseÞ ¼ ; then
17 foreach ti 2 Ttrue do
18 R R [fðloc; true; tiÞg;
19 end
20 foreach ti 2 Tfalse do
21 R R [fðloc; false; tiÞg;
22 end
23 end

3.2.2 For Missing Preconditions

Angelic fix localization for missing preconditions is slightly
different from that for IF conditions. For each non-branch

and non-loop statement that is evaluated during test suite
execution, an angel forces to skip it. If a failing test case now
passes, it means that a potential fix location has been found.
The oracle for repair is then “false”; that is, the added pre-
condition must be false, i.e., the statement should be
skipped. Then, an angelic tuple ðloc; val; testÞ is (precondi-
tion location, false, failing test case).

Algorithm 2 is the pseudo-code of this algorithm. Given a
non-IF statement stmt, we skip this statement to check
whether all failing test cases are passed, i.e., Lines 4 to 9. If
yes, the location loc of the precondition as well as its angelic
value false is collected, i.e., Lines 11 to 13. If skipping the
statement does not pass all the failing test cases, no angelic
values will be returned. This technique also works for miss-
ing preconditions for entire blocks since blocks are just spe-
cific statements in Java. In our implementation, we only
consider adding missing preconditions for single statements
rather than blocks. Manual examination on the dataset in
Section 4.4 will show that our dataset does not contain miss-
ing preconditions for blocks.

Algorithm 2. Angelic Fix Localization Algorithm for
Missing Preconditions

Input:
stmt, a candidate non-IF statement;
Tf , a set of failing test cases.
Output:
R, a set of angelic tuples.

1 R ;;
2 Initialize a test case set Tpre ;;
3 Let loc be the location of a potential precondition of stmt;
4 Force stmt to be skipped and execute Tf ;
5 foreach failing test case ti 2 Tf do
6 if ti passes then
7 Tpre Tpre [ftig;
8 end
9 end
//All test cases in Tf are passed

10 if Tpre ¼ Tf then
11 foreach ti 2 Tpre do
12 R R [fðloc; false; tiÞg;
13 end
14 end

3.2.3 Characterization of the Search Space

We now characterize the search space of angelic values. If
an IF condition is executed more than once in a failing test
case, there may exist a sequence of multiple different
angelic values resulting in a passing test case. For example,
a buggy IF condition that is executed three times by one fail-
ing test case may require a sequence of three different
angelic values to pass the test case.

Search space for buggy IF conditions. In general, if one failing
test case executes a buggy IF condition for tc times, the
search space of all sequences of angelic values is 2tc . To
avoid the problem of combinatorial explosion, NOPOL

assumes that, for a given failing test case, the angelic value
is the same during the multiple executions on one state-
ment. The search space size becomes 2 for one failing test
case instead of 2tc . Under this assumption, the search space
is shown as follows.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 37

For buggy IF condition, the search space is 2� nc where
nc is the number of executed IF statements by a given failing
test case.

Search space for missing preconditions. Similarly to angelic fix
localization for buggy IF conditions, if a statement is executed
several times by the same failing test case, angelic fix localiza-
tion directly adds a precondition (with a false value) and
completely skips the statement for a given test case.

For missing precondition bugs, the search space size is np,
where np is the number of executed statements by test cases.
It is not 2� np because we only add a precondition and check
whether the false value passes the failing test case.

NOPOL does not decide a priority between updating exist-
ing conditions or adding new preconditions. A user can try
either strategy, or both. There is no analytical reason to pre-
fer one or the other; our evaluation does not give a definitive
answer to this question. In our experiment, we perform both
strategies for statements one by one (see Section 3.1).

If no angelic tuple is found for a given location, there are
two potential reasons. First, it is impossible to fix the bug by
changing the particular condition (resp. adding a precondi-
tion before the statement). Second, only a sequence of differ-
ent angelic values, rather than a single angelic value, would
enable the failing test case to pass. Hence, NOPOL is incom-
plete: there might be a way to fix an IF condition by alternat-
ing the way of finding angelic values, but we have not
considered it in this paper.

3.3 Runtime Trace Collection for Repair

Once an angelic tuple is found, NOPOL collects the values
that are accessible at this location during program execu-
tion. Those values are used to synthesize a correct patch (in
Section 3.4). In our work, different kinds of data are col-
lected to generate a patch.

3.3.1 Expected Outcome Data Collection

As mentioned in Section 3.2, an angelic value indicates that
this value enables a failing test case to pass. To generate a
patch, NOPOL collects the expected outcomes of conditional
values to pass the whole test suite: angelic values for fail-
ing test cases as well as actual execution values for the
passing ones.

Let O be a set of expected outcomes in order to pass all
test cases. An expected outcome Oloc;m;n 2 O refers to the
value at location loc during the mth execution in order to
pass the n-th test case. NOPOL collects Oloc;m;n for all execu-
tions of location loc.

For buggy IF conditions. Oloc;m;n is the expected outcome of
the condition expression at loc. For a failing test case, the
expected outcome is the angelic value; for a passing test
case, the expected outcome is the runtime value evalðlocÞ,
i.e., the result of the evaluation during the actual execution
of the IF condition expression.

Oloc;m;n ¼ evalðlocÞ; for passing test cases
angelic value for failing test cases.

�

For missing preconditions. Oloc;m;n is the expected value of
the precondition at loc, i.e., true for passing test cases and
false for failing test cases. The latter comes from angelic
fix localization: if the precondition returns false for a

failing test case, the buggy statement is skipped and the test
case passes.

Oloc;m;n ¼ true for passing test cases
false for failing test cases.

�

Note that not all the bugs with missing preconditions can
be fixed with the above definition. Section 4.6.3 will present
the limitation of this definition with a real example.

3.3.2 Primitive Type Data Collection

At the location of an angelic tuple, NOPOL collects the values
of all local variables, method parameters, and class fields
that are typed with a basic primitive type (booleans, inte-
gers, floats, and doubles).

Let Cloc;m;n be the set of collected values at location loc
during the mth execution of the nth test case. In order to
synthesize conditions that use literals (e.g., if (x > 0)),
Cloc;m;n is enriched with constants for further patch synthe-
sis. First, NOPOL collects static values that are present in the
program.2 Second, we add three standard values {0, �1, 1},
which are present in many bug fixes in the wild (for
instance for well-known off-by-one errors). Based on these
standard values, other values can be formed via wiring
building blocks (in Section 3.4.2). For example, a value 2 in a
patch can be formed as 1þ 1, if 2 is not collected during run-
time trace collection.

3.3.3 Object-Oriented Data Collection

NOPOL aims to support automatic repair for object-oriented
programs. In particular, we would like to support nullness
checks and some particular method calls. For instance,
NOPOL is able to synthesize the following patch containing a
method call.

+ if (obj.size() > 0) {
compute(obj);

+ }
To this end, in addition to collecting all values of primi-

tive types, NOPOL collects two kinds of object-oriented fea-
tures. First, NOPOL collects the nullness of all variables of
the current scope. Second, NOPOL collects the output of
“state query methods”, defined as the methods that inspect
the state of objects and are side-effect free. A state query
method is an argumentless method with a primitive return
type. For instance, methods size() and isEmpty() of
Collection are state query methods. The concept of state
query methods is derived from “argument-less boolean
queries” of “object states” by Pei et al. [2].

NOPOL is manually fed with a list of such methods. The
list is set with domain-specific knowledge. For instance, in
Java, it is easy for developers to identify such side-effect
free state query methods on core library classes such as
String, File and Collection. For each object-oriented
class T , those predefined state query methods are denoted
as sqmðT Þ.

2. Besides collecting static fields in a class, we have also tried to col-
lect other class fields of the class under repair, but the resulting patches
are worse in readability than those without collecting class fields.
Hence, no class fields other than static fields are involved in data
collection.

38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

NOPOL collects the nullness of all visible variables and the
evaluation of state query methods for all objects in the scope
(local variables, method parameters, and fields) of a location
where an angelic tuple exists. Note that this incorporates
inheritance; the data are collected based on the polymor-
phism in Java. For instance, when the value of obj.size
() is collected, it may be for one implementation of size()
based on array lists and for another implementation of
size() based on linked lists. This means that a patch syn-
thesized by NOPOL can contain polymorphic calls.

3.3.4 On the Size of Collected Data

Let us assume there are u primitives values and a set O of w
objects in the scope of an angelic tuple. In total, NOPOL col-
lects the following values:

� u primitive variables in the scope;
� w boolean values corresponding to the nullness of

each object;
� P

o2O jsqmðclassðoÞÞj values corresponding to the
evaluation of the state query methods of all objects
available in the scope, where classðoÞ denotes the
class of the object o;

� constants, i.e., 0, -1, and 1 in our work.

3.4 Patch Synthesis: Encoding Repair in SMT

The patch synthesis of buggy IF conditions and missing
preconditions consists of synthesizing an expression exp
such that

8loc;m;n expðCloc;m;nÞ ¼ Oloc;m;n: (1)

As a synthesis technique, NOPOL, as SemFix [5], uses a
variation of oracle-guided component-based program syn-
thesis [8], which is based on SMT.

The solution of the SMT problem is then translated back
to a boolean source code expression exp representing the
corrected IF condition or the added precondition.

3.4.1 Building Blocks

We define a building block (called a component in [8]) as a type
of expression that can appear in the boolean expression to
be synthesized. For instance, the logical comparison opera-
tor “<” is a building block. As building block types, we con-
sider comparison operators (< , > , �, �, ¼, and 6¼),
arithmetic operators (þ, �, and �),3 and boolean operators
(^, _, and :). The same type of building blocks can appear
multiple times in one expression.

Let bi be the ith building block (i ¼ 1; 2; . . . ; k). Then bi is
identified as a tuple of a set of input variables Ii, an output
variable ri, and an expression fiðIi; riÞ encoding the opera-
tion of the building block. That is bi ¼ ðfiðIi; riÞ; Ii; riÞ
(bi ¼ ðfi; Ii; riÞ for short). For example, given a boolean out-
put ri and an input Ii ¼ fIi;1; Ii;2g consisting of two boolean
values, a building block could be bi ¼ ðfi; fIi;1; Ii;2g; riÞ,
where fi is implemented with the operator ^, i.e., Ii;1 ^ Ii;2.

Let r be the final value of the synthesized patch. Hence
there exists one building block bi whose output is bound to
the return value ri ¼ r.

Suppose we are given a set B of building blocks and a list
CO of pairs ðCloc;m;n; Oloc;m;nÞ, i.e., pairs of collected values
and expected values at the location loc during the m-th exe-
cution of the n-th test case. Cloc;m;n includes values of differ-
ent types: BOOL, INT, or REAL.4 A patch is a sequence of
building blocks <b1; b2; . . . ; bk> with bi 2 B, whose input
values are taken from either Cloc;m;n or other building blocks.

3.4.2 Wiring Building Blocks

The problem of patch synthesis is thus to wire the input of
building blocks <b1; b2; . . . ; bk> to the input values I0 or the
output values of other building blocks. To synthesize a con-
dition, we need to make sure that the types of the variables
are valid operands (e.g., an arithmetic operator onlymanipu-
lates integers).

Example. Let us assume that Cloc;m;n has three values, an
integer variable i0, a boolean constant c1 False, and an
integer constant c2 3. Assume we have two building
blocks, BOOL f1ðBOOLÞ and BOOL f2ðINT; INTÞ.
Then the goal of patch synthesis is to find a well formed
expression, such as False, f1ðFalseÞ, f2ði0; 3Þ, f2ð3; 3Þ, and
f1ðf2ð3; 3ÞÞ; meanwhile, one of these expressions is expected
to match the final output r.

3.4.3 Mapping Inputs and Outputs with Location

Variables

Let I ¼ [Ii and O ¼ [frig be the sets of input and output
values of all building blocks bi 2 B. Let I0 be the input set
fCloc;m;ng and let r be the output in the final patch. We define
IO as IO ¼ I [O [I0 [frg. We partition the elements of IO
according to their types in BOOL, INT, and REAL.

The SMT encoding relies on the creation of location vari-
ables. A location variable lx 2 L represents an index of an ele-
ment x 2 IO. Note that the concept of location variables in
SMT encoding is different from the concept of locations
in Section 3.2. A location variable lx indicates a relative
position, i.e., an index, of x in a patch while a location loc
indicates an absolute position of a statement in a source file.
A value variable vx 2 V represents a value taken by an ele-
ments x 2 IO. Values of location variables are actually
integers (L � INT); value variables are of any supported
type, i.e., BOOL, INT, or REAL.

Informally, a location variable lx serves as an index
of x 2 IO in a code fraction while a value variable vx indi-
cates its value during test execution. Section 3.4.4 will fur-
ther illustrate how to index the code via location variables.
Location variables are invariants for the execution of all test
cases: they represent the patch structure. Value variables
are used internally by the SMT solver to ensure that the
semantics of the program is preserved.

3.4.4 Domain Constraints

Let us first define the domain constraints over the location
variables. Given the input set I0 and the building block set
B, let p be the number of possible inputs and p ¼ jI0j þ jBj.
The location variables of the elements of I0 and r are fixed:

3. Adding the division is possible but would require specific care to
avoid division by zero.

4. In the context of SMT, we use BOOL, INT, and REAL to denote
the types of booleans, integers, and doubles as well as floats in Java,
respectively.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 39

fFIXEDðI0; rÞ ¼
�
^jI0ji¼1 lI0;i ¼ i

�^
lr ¼ p:

Given building blocks bi 2 B, the location variable lri for
the output ri (ri 2 O) of bi belongs to a range of ½jI0j þ 1; p�:

fOUTPUT ðOÞ ¼
ĵOj

i¼1
ðjI0j þ 1 � lri � pÞ:

Handling types. Only the location variables corresponding
to the values of the same type are allowed. Suppose that
typeðxÞ returns the set of elements with the same type of x
among BOOL, INT, and REAL. Then we can restrict the
values taken by the location variables of the input values of
building blocks using the following formula:

fINPUT ðIÞ ¼
^
x2I

_
y2typeðxÞ;x6¼y

ðlx ¼ lyÞ:

Recall the example in Section 3.4.2, we have the input
I0 ¼ fi0; c1; c2g, the output r, and two building blocks f1 and
f2. We assume that each building block is involved in the
patch for at most once for simplifying the example; in our
implementation, a building block can be used once or more
in a synthesized patch. Then we have the location variables
as follows. The location variables of i0, c1, and c2 are 1, 2,
and 3; the locations variables of building blocks are 4 and 5,
respectively. Based on the types, candidate values of loca-
tion variables of If1;1, If2;1, and If2;2 are calculated.

li0 ¼ 1 input variable, integer
lc1 ¼ 2 boolean constant, False
lc2 ¼ 3 integer constant, 3
lrf1 2 ½4; 5� output of f1, boolean

lrf2 2 ½4; 5� output of f2, boolean

lr ¼ 5 expected output value, boolean
lIf1 ;1 2 flc1 ; lrf1 ; lrf2 g the parameter of f1, boolean

lIf2 ;1 2 fli0 ; lc2g the first parameter of f2, integer

lIf2 ;2 2 fli0 ; lc2g the second parameter of f2, integer

The following additional constraints are used to control
the values of location variables. First, we ensure that each
output of a building block is mapped to one distinct input
(wires are one-to-one).

fCONSðL;OÞ ¼
^

x;y2O;x6¼y
lx 6¼ ly:

Second, we need to order the building blocks in such a
way that its arguments have already been defined.

fACYCðB;L; I; OÞ ¼
^

ðfi;Ii;riÞ2B

^
x2Ii

lx < lri:

Then, we combine all constraints together.

fWFF ðB;L; I; O; I0; rÞ ¼ fFIXEDðI0; rÞ ^ fOUTPUT ðOÞ
^fINPUT ðIÞ ^ fCONSðL;OÞ ^ fACYCðB;L; I;OÞ:

An assignment of L variables respecting the predicate
fWFF ðB;L; I; O; I0; rÞ corresponds to a syntactically correct
patch.

Value variables corresponding to the input and the
output of a building block are related according to the func-
tional definition of a predicate pbi. Given a building
block bi ¼ ffi; Ii; rig, let valueðIiÞ be a function that returns
the value for the input Ii. For a value variable vri , let

pbiðvalueðIiÞ; vriÞ ¼ true iff fiðIiÞ ¼ ri. Given VIO ¼
fvxjx 2 I [Og, we define the following constraint.

fLIBðB; VIOÞ ¼
^

ðfi;Ii;riÞ2B;vri2VIO
pbiðvalueðIiÞ; vriÞ:

The location variables and the value variables are con-
nected together using the following rule which states that
elements at the same position should have the same value.
Note that we need to limit the application of that rule to val-
ues of the same type because in our case, input or output
values can be of different types. Such a limitation to the ele-
ments of the same type is valid since the domain of the loca-
tion variables are managed using constraints fINPUT ðIÞ.

fCONNðL; VIOÞ ¼̂

S2fBOOL;INT;REALg

^
x;y2S

lx ¼ ly) vx ¼ vy:

Let the notation a½v x� mean that the variable v in the
constraint a has been set to the value x. For a given location
loc, the patch for a given input I0 and a given output r is pre-
served using the following existentially quantified constraint.

fFUNCðB;L;Cloc;m;n;Oloc;m;nÞ ¼
9VIO

�
fLIBðB;VIOÞ

^

fCONNðL; VIOÞ½valueðI0Þ Cloc;m;n; vr Oloc;m;n�
�
:

Finally, finding a patch which satisfies all expected
input-output pairs ðCloc;m;n; Oloc;m;nÞ requires to satisfy the
following constraint.

fPATCHðB; I; O;CO; I0; rÞ ¼
9L

� ^
ðCloc;m;n;Oloc;m;nÞ2CO

fFUNCðB;L;Cloc;m;n; Oloc;m;nÞ
^

fWFF ðB;L; I; O; I0; rÞ
�
:

3.4.5 Complexity Levels of Synthesized Expressions

Ideally, we could feed SMT with many instances of all kinds
of building blocks (see Section 3.4.1). Only the required
building blocks would be wired to the final result. This is an
inefficient strategy in practice: some building blocks require
expensive computations, e.g., a building block for multipli-
cation (which is a hard problem in SMT).

To overcome this issue, we use the same technique of
complexity levels as SemFix [5]. We first try to synthesize
an expression with only one instance of easy building blocks
(< , �, 6¼, and ¼)5. Then, we add new building blocks (e.g.,
building blocks of logical operators and arithmetic opera-
tors, successively) and eventually we increase the number

5. > and � are obtained by symmetry, e.g., a � b as b � a.

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

of instances of building blocks. We refer to those successive
SMT satisfaction trials as the “SMT level”.

3.4.6 Patch Pretty-Printing

NOPOL translates a solution to a patch in source code if there
is a feasible solution to the SMT problem. Since NOPOL

repairs bugs with buggy IF conditions and missing precon-
ditions, the patch after translation is a conditional expres-
sion, which returns a boolean value.

The translation is obtained with a backward traversal
starting at the final output location lr, as explained in Algo-
rithm 3. A function traverse returns the traversal result
according to the location variables while a function code
converts a variable into source code. For example, for a vari-
able a, codeðaÞ is translated to a; if f denotes the conjunction
of boolean values, codeðfðtraverseðaÞ; traverseðbÞÞÞ is trans-
lated to a ^ b. As shown in Algorithm 3, patch translation
from a SMT solution to a patch is a deterministic algorithm,
which generates an identical patch for a given SMT solution.
Once a patch is translated from the SMT solution, NOPOL

returns this patch to developers as the final patch.

Algorithm 3. Translation Algorithm from an SMT Solu-
tion to a Source Code Patch

Input: L, an assignment of location variables, i.e., an SMT
solution;
r, a final and expected output variable of patch;
Output:
patch, a source code patch.
1 Find a location variable lx ¼ lr;
2 patch ¼ traverselx;
3 Function traverse lx
4 if x 2 O then // Output of a building block
5 Find the expression fxðIx; xÞ and Ix ¼ ðIx;1; Ix;2; :::Þ;
6 return codeðfxðtraverseðIx;1Þ; traverseðIx;2Þ; :::ÞÞ;
7 else if x 2 I then // Input of a building block
8 Find y for ly ¼ lx; // ly 2 O [I0
9 return traverseðlyÞ;
10 else // x 2 I0, from collected runtime trace
11 return codeðxÞ;
12 end
13 end

Here is a possible solution to the SMT instance for our
running example (in Section 3.4.2):
li0 ¼ 1, lc1 ¼ 2, lc2 ¼ 3, lr ¼ 5, lrf1 ¼ 4, lrf2 ¼ 5, lIf1 ;1 ¼ 2,
lIf2 ;1 ¼ 1, lIf2 ;2 ¼ 1.

In our example, the output is bound to lr ¼ 5 that is the
output of f2. Then f2 takes the integer input value i0 in li0 as

a parameter. The final patch is thus the expression f2ði0; i0Þ
which returns a boolean. This patch could be the repair of
a bug, i.e., a fixed IF condition or an added precondition.
In this example, f1 is never used.

3.5 Fault Localization

NOPOL uses an existing fault localization technique to speed
up finding an angelic value, if one exists. In fault localiza-
tion, statements are ranked according to their suspicious-
ness. The suspiciousness of a statement measures its
likelihood of containing a fault.

In NOPOL, a spectrum-based ranking metric, Ochiai [22],
is used as the fault localization technique. Existing empirical
studies [23], [24] show that Ochiai is more effective on local-
izing the root cause of faults in object-oriented programs
than other fault localization techniques. In Section 5.2, we
will compare the effectiveness among different fault locali-
zation techniques.

Given a program and a test suite, the suspiciousness
suspðsÞ of a statement s is defined as follows.

suspðsÞ ¼ failedðsÞffi
total failed 	 ðfailedðsÞ þ passedðsÞÞp ;

where total failed denotes the number of all the failing test
cases and failedðsÞ and passedðsÞ respectively denote the
number of failing test cases and the number of passing test
cases, which cover the statement s. Note that 0 � suspðsÞ �
1 where suspðsÞ ¼ 1 indicates the highest probability of
localizing the bug and suspðsÞ ¼ 0 indicates there is no like-
lihood between this statement and the bug.

We rank all the statements based on their suspiciousness in
descending order. For all the statements with the suspicious-
ness over zero, we detect whether this statement is an IF state-
ment or not. As previously mentioned in Section 3.1, for an IF

condition, NOPOL tries to synthesize a new conditionwhile for
a non-IF statement, NOPOL tries to add a precondition.

4 AUTOMATIC REPAIR OF REAL-WORLD IF BUGS

We now evaluate our repair approach, NOPOL, on a dataset
of 22 real-world bugs. First, we describe our evaluation
methodology in Section 4.1; second, we introduce the setup
of our dataset in Section 4.2 and the implementation details
in Section 4.3; third, we present the general description of
the synthesized patches in Section 4.4; fourth, four bugs are
employed as case studies in Section 4.5 and five bugs are
used to illustrate the limitations in Section 4.6.

4.1 Evaluation Methodology

Our evaluation methodology is based on the following
principles.

P1. We evaluate our tool, NOPOL, on real-world buggy
programs (Section 4.4).

P2. For bugs that NOPOL can fix, we examine the automat-
ically generated patches, and compare them with human-
produced patches (Section 4.5).

P3. For bugs that NOPOL cannot correctly fix, we check
the details of these bugs and highlight the reasons behind
the unrepairability (Section 4.6). When the root cause is an
incorrect test case (i.e., an incomplete specification), we
modify the test case and re-run NOPOL.

P4. We deliberately do not compute a percentage of
repaired bugs because this is a potentially unsound mea-
sure. According to our previous investigation [11], this mea-
sure is sound if and only if 1) the dataset is only composed
of bugs of the same kind and 2) the distribution of complex-
ity within the dataset reflects the distribution of all in-the-
field bugs within this defect class. In our opinion, the sec-
ond point is impossible to achieve.

We have not quantitatively compared our approach
against existing repair approaches on the same dataset

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 41

because 1) either existing approaches are inapplicable on
this dataset (e.g., GenProg [1] and SemFix [5] are designed
for C programs); 2) or these approaches are not publicly
available (e.g., PAR [6] and mutation-based repair [25]).

4.2 Dataset of Real-World Bugs

NOPOL focuses on repairing conditional bugs, i.e., bugs in IF

conditions and preconditions. Hence, we build a dataset of
22 real-world bugs of buggy IF conditions and missing pre-
conditions. Since our prototype implementation of NOPOL

repairs Java code, these 22 bugs are selected from two open-
source Java projects, Apache Commons Math6 and Apache
Commons Lang7 (Math and Lang for short, respectively).

Both Math and Lang manage source code using Apache
Subversion8 (SVN for short) and manage bug reports using
Jira.9 Jira stores the links between bugs and related source
code commits. In addition, these projects use the FishEye
browser to inspect source code and commits.10

In our work, we employ the following four steps to col-
lect bugs for the evaluation. First, we automatically extract
small commits that modify or add an IF condition using
Abstract Syntax Tree (AST) analysis [26]. We define a small
commit as a commit that modifies at most five files, each of
which introduces at most 10 AST changes (as computed by
the analytical method, GumTree [26]). In Math, this step
results in 161 commits that update IF conditions and 104
commits that add preconditions; in Lang, the commits are
165 and 91, respectively. The lists of commits are available
at the NOPOL project [27]. Second, for each extracted commit,
we collect its related code revision, i.e., the source program
corresponding to this commit. We manually check changes

between the code revision and its previous one; we only
accept changes that contain an IF condition or a missing pre-
condition and do not affect other statements. Those commits
could also contain other changes that relate to neither a bug
nor a patch, such as a variable renaming or the addition of
a logging statement. In this case, changes of the patch are
separated from irrelevant changes. Third, we extract the test
suite at the time of the patch commit, including failing
test cases.11 Fourth, we manually configure programs and
test suites to examine whether bugs can be reproduced.
Note that the reproducibility rate is very low due to the
complexity of the projects Math and Lang.

Table 1 summarizes the 22 bugs in two categories, i.e.,
bug types of buggy IF conditions and missing preconditions.
We index these bugs according to their types and projects.
A bug index (Column 3) is named based on the following
rule. Letters C and P indicate bugs with buggy IF conditions
and missing preconditions, respectively; M and L are bugs
from Math and Lang, respectively. For instance, CM1 refers
to a bug with a buggy IF condition in the project Math. We
also record the number of executable Lines of Code (LoC,
i.e., the number of lines that exclude empty lines and com-
ment lines) for each source program (Column 6). Moreover,
we show the number of classes, the number of methods
in the buggy program, and the number of unit test cases
(Columns 7-9). For each method that contains the buggy
code, we describe the functionality of this method and
record its Cyclomatic Complexity (Columns 10 and 11). The
Cyclomatic Complexity [29] is the number of linearly indepen-
dent paths through the source code of a method. This com-
plexity indicates the testability of a method and the
difficulty of understanding code by developers.

TABLE 1
The Evaluation Dataset of NOPOL

6. Apache Commons Math, http://commons.apache.org/math/
7. Apache Commons Lang, http://commons.apache.org/lang/
8. Apache Subversion, http://subversion.apache.org/
9. Jira for Apache, http://issues.apache.org/jira/
10. FishEye for Apache, http://fisheye6.atlassian.com/

11. In considered commits, bug fixes are always committed together
with originally failing test cases (which are passed after fixing the
bugs). This is a rule in Apache development process [28].

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

As shown in Table 1, the dataset contains 16 bugs with
buggy IF conditions and 6 bugs with missing preconditions.
Among these bugs, 12 bugs are from Math and 10 bugs are
from Lang. In average, a buggy program consists of 25.48
K executable lines of code. The average complexity is 8.6;
that is, a buggy method consists of 8.6 independent paths
in average. Note that the method complexity of Bug PM1
is 1 since its buggy method contains only one throw state-
ment (which misses a precondition); the method complex-
ity of Bug CM9 is 38 and its buggy method contains 30 IF

statements.

4.3 Implementation Details

Our approach, NOPOL, is implemented with Java 1.7 on top
of Spoon 3.1.0.12 Spoon [30] is a library for transforming and
analyzing Java source code. It is used for angelic fix localiza-
tion, instrumentation, and final patch synthesis in our work.
Fault localization is implemented with GZoltar 0.0.10.13

GZoltar [31] is a fault localization library for ranking faulty
statements. The SMT solver inside NOPOL is Z3 4.3.2.14 We
generate SMT-LIB15 files using jSMTLIB.16 jSMTLIB [32] is a
library for checking, manipulating, and translating SMT-
LIB formatted problems. The test driver is JUnit 4.11. For
future replication of the evaluation, the code of NOPOL is
available on GitHub [33].

All experiments are run on a PC with an Intel Core i7 3.60
GHz CPU and a Debian 7.5 operating system. The maxi-
mum heap size of Java virtual machine was set to 2.50 GB.

4.4 Main Research Questions

We present the general evaluation of NOPOL on the dataset
via answering six Research Questions (RQs).

RQ1: CanNOPOL fix real bugs in large-scale Java software?

In test-suite based repair, a bug is fixed if the patched pro-
gram passes the whole test suite [1]. Table 2 presents the
evaluation of patches on 22 bugs. Column 3 shows the
buggy code (the condition for each bug with a buggy IF con-
dition and the statement for each bug with a missing pre-
condition). Column 4 shows the patches that were
manually-written by developers as found in the version
control system: the updated condition for each bug with a
buggy IF condition and the added precondition for each bug
with a missing precondition. Column 5 presents the gener-
ated patches by NOPOL. Column 6 is the result of our manual
analysis of the correctness of the patches (will be explained
in RQ2). Finally, Column 7 shows whether we had to mod-
ify existing test cases: “A” stands for additional test cases,
“T” for transformed test cases, and “D” for deleted test
cases. The purpose of test case modification is to yield a cor-
rect repair (will be explained in RQ3).

As shown in Table 2, among 22 bugs, NOPOL can fix 17
bugs: 13 out of 16 bugs with buggy IF conditions and four
out of six bugs with missing preconditions. Meanwhile,
four out of five unfixed bugs relate to timeout. In our work,
the execution time of NOPOL is limited to up to five hours.
We will empirically analyze the fixed bugs in Section 4.5
and explore the limitations of our approach as given by the
five unfixed bugs in Section 4.6.

Table 2 also shows that patches generated by NOPOL

consist of both primitive values and object-oriented fea-
tures. For the object-oriented features, two major types can

TABLE 2
Buggy Code, Manually-Written Patches, and Generated Patches for the Bugs of the Dataset

12. Spoon 3.1.0, http://spoon.gforge.inria.fr/
13. GZoltar 0.0.10, http://gzoltar.com/
14. Z3, http://github.com/Z3Prover/z3/
15. SMT-LIB, http://smt-lib.org/
16. jSMTLIB, http://sourceforge.net/projects/jsmtlib/

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 43

be found in the generated patches: nullness checking
(patches of Bugs CL4 and PM2) and the length() method
of strings (patches of Bugs CL1, CL2, CL3, and CL5).

Note that six bugs (Bugs CM2, CM3, CM4, CM5, CM6,
and CM10) with buggy IF conditions are fixed by adding
preconditions rather than updating conditions. One major
reason is that a non-IF statement is ranked above the buggy
IF statement during the fault localization; then NOPOL adds a
patch, i.e., a precondition to this non-IF statement. Hence,
the condition inside the buggy IF statement cannot be
updated. This shows that those two kinds of patches intrin-
sically relate to each other. To further understand this phe-
nomenon, we have performed repair only in the mode of
“condition” in NOPOL: the six bugs could also be fixed via
only updating IF conditions.

RQ2: Are the synthesized patches as correct as the man-
ual patches written by the developer?

In practice, a patch should be more than making the test
suite pass since test cases may not be enough for specifying
program behaviors [11], [13]. In this paper, a generated
patch is correct if and only if the patch is functionally equiv-
alent to the manually-written patch by developers.

For each synthesized patch, we have followed Qi et al.
[13] to perform a manual analysis of its correctness. The
manual analysis consists of understanding the domain (e.g.,
the mathematical function under test for a bug in the project
Math), understanding the role of the patch in the computa-
tion, and understanding the meaning of the test case as well
as its assertions.

As shown in Table 2, 13 out of 17 synthesized patches are
as correct as the manual patches. Among these 13 correct
patches, five patches (for Bugs CM1, CM2, CM3, CM5, and
CM7) are generated based on not only the original test suite
but also additional test cases. The reason is that the original
test suite is too weak to drive the synthesis of a correct
patch; then we had to manually write additional test cases
(all additional test cases are publicly-available on the com-
panion website [27]17). This will be discussed in next
research question.

For four bugs (Bugs CM4, CM6, CL1, and CL5), we are
not able to synthesize a correct patch. This will be further
discussed in Section 5.4.

RQ3: What is the root cause of test case modification?

As shown in Table 2, some bugs are correctly repaired
only after the test case modification (including test case
addition, transformation, and deletion). The most important
modification is test case addition. Six bugs (Bugs CM1,
CM2, CM3, CM4, CM5, and CM7) with additional test cases
correspond to too weak specifications. We manually added
test cases for these bugs to improve the coverage of buggy
statements. Without the additional test case, the synthesized
patch is degenerated. A case study of Bug CM1 (Section
4.5.4) will further illustrate how additional test cases help to
synthesize patches. Note that all additional test cases appear
in the bugs, which are reported in the early stage of the proj-
ect Math. One possible reason is that the early version of

Math is not in test-driven development and the test suites
are not well-designed.

In test case transformation (Bugs CM2, CM3, CM5, CM6,
CM7, CL1, CL2, CL3, CL4, CL5, CL6, and PL3), we simply
break existing test cases into smaller ones, in order to have
one assertion per test case. This is important for facilitating
angelic fix localization since our implementation of NOPOL

has a limitation, which collects only one runtime trace for a
test case (Section 3.2). We note that such test case transfor-
mation can even be automated [34].

The reason behind the four bugs with deleted test cases
(Bugs CM6, CM7, CL1, and CL4) is accidental and not
directly related to automatic repair: these deleted test cases
are no longer compatible with the Java version and external
libraries, which are used in NOPOL.

RQ4: How are the bugs in the dataset specified by test
cases?

To further understand the repair process of bugs by
NOPOL, Tables 3 and 4 show the detailed analysis for patched
statements in 17 fixed bugs and buggy statements in five
non-fixed bugs, respectively. Table 3 gives the following
information: whether a synthesized patch is at the same loca-
tion as the one written by the developer, the number of fail-
ing (ef) and passing (ep) test cases executing the patched
statements, the fault localization metrics (the rank of the
patched statement and the total number of suspicious state-
ments), the overall execution time of NOPOL, and the SMT
level (see Section 3.4.5). In Table 4, ef and ep denote the num-
ber of failing and passing test cases executing the buggy
statements while the rank of the buggy statement is listed.

Tables 3 and 4 show the numbers of failing (ef) and pass-
ing (ep) test cases that execute the patched or buggy state-
ments. Such numbers reflect to which extent the statement
under repair is specified by test cases. As shown in Table 3,
the average of ef and ep are 1.8 and 7.1 for 17 bugs with syn-
thesized patches. In Table 4, the average of ef and ep are 4.4
and 27.4 for five bugs without patches.

For all 22 bugs under evaluation, only one bug has a large
number of failing test cases (ef � 10): Bug PL3 with ef ¼ 18.
For this bug, although the buggy statement is ranked at the
first place, NOPOL fails in synthesizing the patch. This failure
is caused by an incorrectly identified output of a precondi-
tion. Section 4.6.3 will explain the reason behind this failure.

RQ5: Where are the synthesized patches localized? How
long is the repair process?

A patch could be localized in a different location from the
patch which is manually-written by developers. We present
the details for patch locations for all the 17 patched bugs in
Table 3. For 11 out of 17 fixed bugs, the locations of patched
statements (i.e., locations of fixes) are exactly the same as
those of the buggy ones. For the other six bugs, i.e., Bugs
CM2, CM3, CM4, CM5, CM6, and CL1, NOPOL generates
patches by adding new preconditions rather than updating
existing conditions, as mentioned in Table 2.

For 17 fixed bugs in Table 3, the average execution time of
repairing one bug is 24.8 seconds while for five non-fixed
bugs in Table 4, four bugs are run out of time and the other
one spends 37 seconds. The execution time of all the 22 bugs
ranges from 6 to 84 seconds.We consider that such execution
time, i.e., fixing one bugwithin 90 seconds, is acceptable.

17. Additional test cases, https://github.com/SpoonLabs/nopol-
experiments/tree/master/data/projects/math/patch/

44 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

In practice, if applying NOPOL to a buggy program, we can
directly set a timeout, e.g., 90 seconds (over 84 seconds
as shown in Table 3) or a longer timeout like five hours
in our experiment. Then for any kind of buggy program
(without knowingwhether the bug is with a buggy condition
or a missing precondition), NOPOL will synthesize a patch, if
it finds any. Then a human developer can check whether this
patch is correct from the user perspective.

RQ6: How effective is fault localization for the bugs in
the dataset?

Fault localization is an important step in our repair
approach. As shown in Table 3, for patched statements in 17
fixed bugs, the average fault localization rank is 32.8. In
four out of 17 bugs (Bugs CM1, CM2, CM7, and CM10),
patched statements are ranked over 50. This fact indicates
that there is room for improving the fault localization tech-
niques. Among the five unfixed bugs, the buggy statements
of Bugs CM9 and PM1 are ranked over 50. Section 5.2 will
further compare the effectiveness of six fault localization
techniques on 22 bugs.

Note that in Tables 3 and 4, Bugs CM6 and PM1 have no
passing test cases. Bug PM1 cannot be fixed by our
approach while Bug CM6 can be still fixed because the two
failing test cases give a non-trivial input-output specifica-
tion. The reason behind the unfixed Bug PM1 is not ep ¼ 0,
but the multiple executions of the buggy code by one test
case. This reason will be discussed in Section 4.6.1.

4.5 Case Studies for Fixed Bugs

We conduct four case studies to show how NOPOL fixes bugs
with buggy IF conditions and missing preconditions. These
bugs are selected because they highlight different facets
of the repair process. The patch of Bug PL4 (Section 4.5.1) is
syntactically the same as the manually-written one; the

patch of Bug CL4 (Section 4.5.2) is as correct as the manu-
ally-written patch (beyond passing the test suite); the patch
of Bug CM2 (Section 4.5.3) is correct by adding a precondi-
tion rather than updating the buggy condition, as written
by developers; and the patch of Bug CM1 (Section 4.5.4) is
correct, but its patch requires an additional test case.

4.5.1 Case Study 1, Bug PL4

NOPOL can generate the same patches for three out of 22
bugs as the manually-written ones. We take Bug PL4 as an
example to show how the same patch is generated. This bug
is fixed by adding a precondition. Fig. 4 shows a method
translate() at Line 1 and the buggy method transla-

teInner() at Line 9 of Bug PL4. The method translate

() is expected to translate a term in the regular expression
of &#[xX]?\d+;? into codepoints, e.g., translating the
term ”0” into ”\u0030”.

TABLE 3
Analysis of the 17 Fixed Bugs (Patched Statement)

Bug type Bug
index

Patch
location

#Test cases Patched statement
rank

#Suspicious
statements z

Execution
time (seconds)

SMT
levelefy epy

Buggy IF condition CM1 Same as dev. 1 4 57 203 12 2
CM2 Different 1 2 179 559 11 2
CM3 Different 1 2 26 35 10 2
CM4 Different 6 2 24 114 13 3
CM5 Different 4 4 3 60 43 3
CM6 Different 2 0 17 254 41 2
CM7 Same as dev. 3 13 143 155 51 2
CM10 Same as dev. 1 3 89 102 21 1
CL1 Different 2 4 2 8 32 2
CL2 Same as dev. 1 9 2 3 6 2
CL3 Same as dev. 2 10 4 5 7 3
CL4 Same as dev. 2 23 1 20 10 3
CL5 Same as dev. 1 36 1 2 37 1

Missing precondition PM2 Same as dev. 1 2 1 12 84 1
PL1 Same as dev. 1 4 6 22 32 2
PL2 Same as dev. 1 1 1 21 6 1
PL4 Same as dev. 1 1 1 25 6 2

Median 1 4 4 25 13 2
Average 1.8 7.1 32.8 94.1 24.8 2

y ef and ep denote the number of failing and passing test cases that execute the patched statement.
z #Suspicious statements denotes the number of statements whose suspiciousness scores by fault localization are over zero.

TABLE 4
Analysis of the 5 Non-Fixed Bugs (Buggy Statement)

Bug

type

Bug

index

#Test

cases
Buggy

statement rank

#Suspicious

statements z
Execution

time (seconds)

efy epy
Buggy

IF condition

CM8 1 51 21 77 -

CM9 1 73 1203 1606 -

CL6 1 10 4 4 -

Missing

precondition

PM1 1 0 52 132 37

PL3 18 3 1 16 -

Median 1 10 21 77 -

Average 4.4 27.4 256.2 367 -

y ef and ep denote the number of failing and passing test cases that execute the
buggy statement.
z #Suspicious statements denotes the number of statements whose suspicious-
ness scores by fault localization are over zero.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 45

To convert from input to codepoints, the characters in
input are traversed one by one. Note that for a string end-
ing with ”&#x”, no codepoint is returned. Lines 15 to 20 in
Fig. 4 implement this functionality. However, the imple-
mentation at Lines 17 to 19 ignores a term in a feasible form
of ”&#[xX]\d+”, e.g., a string like ”0”. A precondi-
tion should be added to detect this feasible form, i.e., the
comment at Line 18 of start == seqEnd.

The buggy code at Line 19 is executed by one passing test
case and one failing test case. Table 5 shows these two test
cases. For the passing test case, the behavior of the method
is expected not to change the variable input while for the
failing test case, the input is expected to be converted. In
the passing test case, the value of the precondition of the
statement at Line 19 is expected to be true, i.e., both start

and seqEnd equal to 8, while in the failing test case, the
condition is expected to be false, i.e., start and seqEnd

are 8 and 19, respectively. The false value is the angelic
value for a missing precondition.

According to those expected precondition values for test
cases, NOPOL generates a patch via adding a precondition,

i.e., start == seqEnd, which is exactly the same as the
manually-written patch by developers. Besides the patch of
Bug PL4, patches of Bugs CM7 and PM2 are also syntacti-
cally the same as the patch written by developers, among 22
bugs in our dataset.

4.5.2 Case Study 2, Bug CL4

For several bugs, NOPOL generates patches that are literally
different from the manually-written patches, but these gen-
erated patches are as correct as manually-written patches. In
this section, we present a case study where NOPOL synthe-
sizes a correct patch for a bug with a buggy IF condition. Bug
CL4 in Lang fails to find the index of a matched string in a
string builder. Fig. 5 presents the buggy method of Bug CL4:
to return the first index of substr in a parent string builder
from a given basic index startIndex. The condition at
Line 4 contains a mistake of startIndex >= size, which
omits checking whether substr == null. A variable size
is defined as the length of the parent string builder. The
manually-written fix is shown at Line 3.

The buggy code at Line 4 in Fig. 5 is executed by 23 passing
test cases and two failing test cases. One of the passing test
cases and two failing test cases are shown in Table 6. For the
passing test case, a value -1 is expected because no matched
string is found. For the two failing test cases, each input
substr is a null value, which is also expected to return a
non-found index -1. This requires the checking of null to
avoid NullPointerException, i.e., the condition at Line 3.

For the passing test case in Table 6, the condition at Line 4
is false. For the two failing test cases, NOPOL extracts the
angelic value true to make both failing test cases pass.
According to these condition values, a patch of ! (substr !

Fig. 4. Code snippet of Bug PL4. The manually-written patch is shown in
the FIX comment at Line 18. Note that the original method translate

consists of three overloaded methods; for the sake of simplification, we
use two methods translate and translateInner instead.

TABLE 5
Sample of Test Cases for Bug PL4

Input

Output,

translate(input) Test result

input index Expected Observed

”Test &#x” 5 ”Test &#x” ”Test &#x” Pass

”Test 0

not test”

5 ”Test u0030

not test”

”Test 0

not test”

Fail

Fig. 5. Code snippet of Bug CL4. The manually-written patch is shown in
the FIX comment at Line 3, which updates the buggy IF condition at Line 4.

46 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

= null) || startIndex>= size can be synthesized. This
synthesized patch is equivalent to substr == null ||

startIndex >= size, which is correct. The resulted
expression based on the solution to the SMTdoes notweaken
the repairability of synthesized patches. A recent method for
finding simplified patches, proposed by Mechtaev et al. [35],
could be used to avoid such a redundant expression.

4.5.3 Case Study 3, Bug CM2

In this section, we present Bug CM2, a correctly patched bug
via adding a precondition, rather than updating an existing
condition, as written by developers. The buggy method in
Bug CM2 is to calculate the value of Binomial Coefficient by
choosing k-element subsets from an n-element set. Fig. 6
presents the buggy method. The input number of elements n
should be no less than zero. But the condition at Line 4 reads
n <= 0 instead of n < 0. The manually-written patch by
developers is in the FIX comment at Line 4.

The buggy code at Line 4 in Fig. 6 is executed by two
passing test cases and one failing test case. Table 7 shows
one passing test case and one failing test case. For the pass-
ing test case, an expected exception is observed; for the fail-
ing test case, an IllegalArgumentException is thrown
rather than an expected value.

To fix this bug, NOPOL generates a patch via adding a
missing precondition n < MathUtils.ZS to the statement
at Line 5, where MathUtils.ZS is a constant equal to 0.
Then this statement owns two embedded preconditions,
i.e., n <= 0 and n < 0. Hence, the generated patch is equiva-
lent to the manually-written patch, i.e., updating the condi-
tion at Line 4 from n <= 0 to n < 0. The reason of adding a
precondition instead of updating the original condition is

that the statement at Line 5 is ranked prior to the statement
at Line 4. This has been explained in Section 4.4. Conse-
quently, the generated patch of Bug CM2 is correct and
syntactically equivalent to the manually-written patch.

4.5.4 Case Study 4, Bug CM1

Insufficient test cases lead to trivial patch generation.
We present Bug CM1 in Math, with a buggy IF condition.
This bug cannot be correctly patched with the original test
suite due to the lack of test cases. In our work, we add two
test cases to support the patch generation. Fig. 7 presents
the buggy source code in the method evaluate() of Bug
CM1. This method returns an estimate of the percentile p of
the values stored in the array values.

According to the API document, the algorithm of eval-
uate() is implemented as follows. Let n be the length of
the (sorted) array. The algorithm computes the estimated

TABLE 6
Sample of Test Cases for Bug CL4

Input
Output,

indexOf(substr, startIndex) Test result
parent substr startIndex Expected Observed

abab z 2 �1 �1 Pass
abab (String) null 0 �1 NullPointerException Fail
xyzabc (String) null 2 �1 NullPointerException Fail

Fig. 6. Code snippet of Bug CM2. The manually-written patch is shown in
the FIX comment at Line 4.

Fig. 7. Code snippet of Bug CM1. The manually-written patch is shown in
the FIX comment at Line 15.

TABLE 7
Sample of Test Cases for Bug CM2

Input

Output, binomial
Coefficient(n,k) Test result

n k Expected Observed

-1 -1 Exception Exception Pass
0 0 1 Exception Fail

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 47

percentile position pos = p * (n + 1) / 100 and the differ-
ence dif between pos and floor(pos). If pos >= n, then
the algorithm returns the largest element in the array; other-
wise the algorithm returns the final calculation of percentile.
Thus, the condition at Line 15 in Fig. 7 contains a bug, which
should be corrected as pos >= n.

As shown in Table 3, this bug is executed by four passing
test cases and one failing test case. Table 8 shows one of the
four passing test cases and the failing test case. In the failing
test case, an ArrayIndexOutOfBounds exception is
thrown at Line 16. For the passing test case, the value of the
condition at Line 15 is equal to the value of the existing con-
dition pos> n, i.e., true; for the failing test case, setting the
condition to be truemakes the failing test case pass; that is,
the angelic value for the failing test case is also true. Thus,
according to these two test cases, the generated patch should
make the condition be true to pass both test cases.

With the original test suite, NOPOL generates a patch as
sorted.length <= intPos, which passes all test cases.
This patch is incorrect. To obtain a correct patch (the one
shown in Table 2), we add one test case of values
{1,2,3}, p 100, as shown in Table 8. Then the expected
value of evaluate() is 3.0. After running NOPOL, a patch
of length <= fpos, which is different from the manually-
written one, i.e., pos >= n. However, from the source code
at Line 7, fpos is the floor() value of pos, i.e., fpos is
the largest integer that no more than pos. That is, fpos
<= pos. Meanwhile, n == length holds according to Line
4. As a result, the generated patch length <= fpos implies
the manually-written one, i.e., pos >= n. We can conclude
that NOPOL can generate a correct patch for this bug by add-
ing one test case.

4.6 Limitations

As shown in Section 4.4, we have collected five bugs that
reveal five different limitations of NOPOL. Table 9 lists these
five bugs in details. We analyze the related limitations in
this section.

4.6.1 No Angelic Value Found

In our work, for a buggy IF condition, we use angelic fix
localization to flip the boolean value of conditions for failing
test cases. For Bug PM1, no angelic value is found as shown
in Table 2. The reason is that both then and else branches
of the IF condition are executed by one failing test case.
Hence, no single angelic value (true or false) can enable
the test case to pass. As discussed in Section 3.2.3, the search
space of a sequence of angelic values is exponential and
hence discarded in our implementation of NOPOL.

To mitigate this limitation, a straightforward solution is
to discard the failing test case, which leads to no angelic val-
ues (keeping the remaining failing ones). However, this may
decrease the quality of the generated patch due to the miss-
ing test data and oracles. Another potential solution is to
refactor test cases into small snippets, each of which covers
only then or else branches [34]. A recent proposed tech-
nique SPR [14] could help NOPOL to enhance its processing
of sequential angelic values.

4.6.2 Performance Bugs Caused by Angelic Values

NOPOL identifies angelic values as the input of patch synthe-
sis. In the process of angelic fix localization, all failing test
cases are executed to detect conditional values that make
failing test cases pass (see Section 3.2). However, sometimes
the trial of angelic fix localization (forcing to true or
false) may result in a performance bug. In our work, Bug
CM9 cannot be fixed due to this reason, i.e., an infinite loop
caused by angelic fix localization.

A potential solution to this issue is to set a maximum exe-
cution time to avoid the influence of performance bugs. But
a maximum execution time of test cases may be hard to be
determined according to different test cases. For instance,
the average execution time of test cases in Math 3.0 is much
longer than that in Math 2.0. We leave the setting of maxi-
mum execution time as one piece of future work.

4.6.3 Incorrectly Identified Output of a Precondition

Asmentioned in Section 3.3.1, the expected output of a miss-
ing precondition is set to be true for a passing test case and

TABLE 8
Two Original Test Cases and One Additional

Test Case for Bug CM1

Input Output,
evaluate(values,p)

Test result

values p Expected Observed

Two original test cases
{0,1} 25 0.0 0.0 Pass
{1,2,3} 75 3.0 Exception Fail

One additional test case

{1,2,3} 100 3.0 3.0 Pass

TABLE 9
Summary of Five Limitations

Bug
index

Root cause Result of repair Reason for the unfixed bug

PM1 Angelic fix localization No angelic value found. Termination
before runtime trace collection and patch synthesis

One failing test case executes the missing precondition
for more than once.

CM9 Angelic fix localization Timeout during test suite execution An infinite loop is introduced during the trial of
angelic values.

PL3 Runtime trace
collection

Timeout during SMT solving The expected value of a precondition is incorrectly
identified.

CM8 Patch synthesis Timeout during SMT solving Amethod call with parameters is not handled by SMT.
CL6 Patch synthesis Timeout during SMT solving A method of a null object yields an undefined value

for SMT.

48 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

is set to be false for a failing one. The underlying assump-
tion for a passing test case is that the true value keeps the
existing program behavior. However, it is possible that given
a statement, both true and false values can make a test
case pass. In these cases, synthesis may not work for bugs
withmissing preconditions.

This is what happens to Bug PL3. Fig. 8 shows a code snip-
pet of Bug PL3. The manually-written patch is a precondition
at Line 3; Table 10 shows one passing test case and one failing
test case. Based on the angelic fix localization in Algorithm 2,
the expected precondition values of all passing test cases are
set to be true. However, in the manually-written patch, the
precondition value by the passing test case in Table 10 is
false, i.e., lower > str.length()where lower is 0 and
str.length() is 10. Thus, it is impossible to generate a
patch like the manually-written one, due to a conflict in the
input-output specification. Consequently, in the phase of
patch synthesis, the SMT solver executeswith timeout.

The example in Bug PL3 implies that for some bugs, the
assumption (i.e., a missing precondition is expected to be
true for passing test cases) can be violated. For Bug PL3, we
have temporarily removed this assumption and only used the
failing test cases to synthesize a patch. The resulting patch is
if(lower >= str.length()) lower = str.length(),
which has the same program behavior as the manually-writ-
ten patch, i.e., lower > str.length(). In NOPOL, we are
conservative and assume that the expected value of a precon-
dition by passing test cases istrue (in Section 3.2.2).

4.6.4 Complex Patches Using Method Calls with

Parameters

In our work, we support the synthesis of conditions that call
unary methods (without parameters). However, our
approach cannot generate a patch if a method with parame-
ters has to appear in a condition. For example, for Bug CM8,
the patch that is written by developers contains a method
abs(x) for computing the absolute value. Our approach
cannot provide such kinds of patches because methods with
parameters cannot be directly encoded in SMT. Then the
lack of information of method calls leads to the timeout of
an SMT solver.

A workaround would generate a runtime variable to col-
lect existing side-effect free method calls with all possible
parameters. For example, one could introduce a newvariable
double tempVar = abs(x) and generate a patch with the
introduced variable tempVar. However, this workaround
suffers from the problem of combinatorial explosion.

4.6.5 Unavailable Method Values for a Null Object

Our repair approach can generate a patch with objected-ori-
ented features. For example, a patch can contain state query
methods on Java core library classes, such as String.

length(), File.exists() and Collection.size().
We map these methods to their return values during the
SMT encoding. However, such methods require that the
object is not null; otherwise, a null pointer exception in
Java is thrown.

Let us consider Bug CL6, whose manually-written patch
is cs == null || cs.length() == 0. For this bug, one
passing test case detects whether the object cs is null. For
this test case, the value of cs.length() is undefined and
not given to SMT. Thus, it is impossible to generate a patch,
which contains cs.length() if cs is null by at least one
test case. Consequently, the SMT solver times-out because it
tries to find a complex patch that satisfies the constraints.

A possible solution is to encode the undefined values in
the SMT. Constraints should be added to ensure that the
unavailable values are not involved in the patch. This needs
important changes in the design of the encoding, which is
left to future work.

5 DISCUSSIONS

We now discuss NOPOL features with respect to four impor-
tant aspects.

5.1 Differences with SemFix

As mentioned in Section 3.4, NOPOL uses the same technique
in the phase of patch synthesis as SemFix [5], i.e., component-
based program synthesis [8]. However, there exist a number
of important differences betweenNOPOL and SemFix.

First, SemFix does not address missing pre-conditions.
As shown in Table 2, adding preconditions enables us to
repair more bugs than only updating conditions. We think
that it is possible to extend the SemFix implementation to
support repairing missing preconditions via adding the
encoding strategy as in NOPOL.

Second, NOPOL does not use symbolic execution to find an
angelic value. It is known that symbolic execution may have
difficulties with the size and complexity of analyzed pro-
grams [36]. According to our work, we have the following
observations. The angelic value in angelic fix localization is

Fig. 8. Code snippet of Bug PL3. The manually-written patch is shown in
the FIX comment at Line 3.

TABLE 10
Sample of Test Cases for Bug PL3

Input Output, abbreviate(str,

lower,upper)
Test

result

str lower upper Expected Observed

”0123456789” 0 -1 ”0123456789” ”0123456789” pass

”012 3456789” 0 5 ”012” ”012 3456789” fail

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 49

possible only when the domain is finite. For booleans, the
domain of variables is not only finite but also very small.
This results in a search space that can be explored dynami-
cally and exhaustively as in NOPOL. Symbolic execution as
done in SemFix is capable of also reasoning on integer varia-
bles, because the underlying constraint solver is capable of
exploring the integer search space. To sum up, our analytical
answer is that for boolean domains, angelic fix localization is
possible and probably much faster (this is claimed, but not
empirically verified). For integer domains, only symbolic
execution is appropriate. Meanwhile, NOPOL can also handle
the right-hand side of assignments as in SemFix. If we encode
the synthesis as in SemFix, the right-hand side of assign-
ments can be directly processed byNOPOL.

Third, NOPOL supports object-oriented code. We have
adapted the code synthesis technique so that the generated
patch can contain null checks and method calls.

Finally, the evaluation of NOPOL is significantly larger
than that of SemFix. We have run NOPOL on larger programs
and real bugs. In SemFix, 4/5 of subject programs have less
than 600 LoC and the bugs are artificially seeded. In the
evaluation in our paper, the average number of lines of
code per subject program is 25 K LoC and the bugs are
extracted from real programs that happened in practice.

5.2 Effectiveness of Fault Localization Techniques

Fault localization plays an important role during the repair
process. In our approach, a fault localization technique
ranks all the suspicious statements and NOPOL attempts to
generate patches by starting with analyzing the most suspi-
cious statement first. We use Ochiai [22] as the fault localiza-
tion technique. For our dataset, we wonder whether there is
a difference between Ochiai and other techniques. In this
section, we study the accuracy of different fault localization
techniques on the bugs of our dataset.

We employ the absolute wasted effort to measure fault
localization techniques. The wasted effort is defined as the
ranking of the actual buggy statement. Given a set S of
statements, the wasted effort is expressed as follows:

effort ¼ jfsuspðxÞ > suspðx	Þgj þ 1;

where x 2 S is any statement, x	 is the actual buggy state-
ment, and j
 j calculates the size of a set. A low value indi-
cates that the fault localization technique is effective.

In our experiment, we compare six well-studied fault
localization techniques: Ochiai [22], Tarantula [37], Jaccard

[22], Naish2 [38], Ochiai2 [38], and Kulczynski2 [39].
Table 11 presents the comparison on the two types of bugs
considered in this paper.

As shown in Table 11, for bugs with buggy IF conditions,
Jaccard obtains the best average wasted effort while Jaccard
andNaish2 get the samemedian value. For bugswithmissing
preconditions, Tarantula obtains the best average wasted
effort while Ochiai, Jaccard, and Naish2 get the same median
value. Those results assess that, according to our dataset of
real bugs, the sensitivity of NOPOL with respect to fault locali-
zation is not a crucial point andOchiai is an acceptable choice.

5.3 Potential Parallelization of NOPOL

Our method NOPOL is originally implemented to not per-
form parallelization. Based on the design of this method, it
is possible to enhance the implementation by parallelizing
NOPOL to reduce the execution time. Indeed, the core algo-
rithms of NOPOL are highly parallelizable.

First, during angelic fix localization, two feasible ways of
parallelization can be performed: over test cases and over
potential locations. Let us assume that there are 3 failing
test cases with respectively 50, 100 and 200 buggy IF condi-
tions executed. Since the search space of buggy IF conditions
is 2� nc (nc is the number of executed IF statements by one
test case, see Section 3.2.3), we could automatically run in
parallel ð50þ 100þ 200Þ � 2 ¼ 700 sessions of angelic fix
localization on many different machines.

Second, our synthesis technique is based on different
SMT levels (see Section 3.4.5). Synthesis at each SMT level
corresponds to one independent SMT instance. Hence, the
synthesis can also be run in parallel. However, we should
mention that parallelizing the synthesis may lead to multi-
ple resulted patches. Synthesis at a low SMT level can gen-
erate a simple patch; for the same bug, synthesis at a higher
SMT level may not generate a better patch and may waste
the running cost.

5.4 Insight on Test-Suite Based Repair

NOPOL is a test-suite based repair approach, as other existing
work ([1], [5], [6], [12], etc.) in the field of automatic software
repair. However, the foundations of test-suite based repair
are little understood. Our experience with NOPOL enables us
to contribute to better understanding the strengths and the
weaknesses of test-suite based repair.

There are two grand research questions behind test-suite
based repair. The first one is about the quality of test suites
[11]: do developers write good-enough test suites for auto-
matic repair? Qi et al. [13] have shown that the test suites
considered in the GenProg benchmark are not good enough,
in the sense that they accept trivial repairs such as directly
removing the faulty code. The experiments we have pre-
sented in this paper shed a different light. For nine bugs
considered in this experiment, the test suite leads to a cor-
rect patch. For four additional bugs, a slight addition in the
test suite allows for generating a correct patch. We consider
this as encouraging for the future of the field. However,
there is a need for future work on recommendation systems
that tell when to add additional test cases for the sake of
repair, and what those test cases should specify.

The second grand research question goes beyond stan-
dard test suites such as JUnit ones and asks whether repair

TABLE 11
Wasted Effort Comparison among Six Fault

Localization Techniques

Fault localization technique Buggy IF

condition
Missing

precondition

Average Median Average Median

Ochiai 131.88 32.00 10.33 1.00

Tarantula 127.63 45.50 7.00 1.50
Jaccard 121.44 25.50 10.33 1.00
Naish2 135.06 25.50 10.33 1.00

Ochiai2 133.06 44.50 8.83 1.50
Kulczynshi2 127.44 45.50 11.50 7.50

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

operators do not overfit the inputs of input-output speci-
fications [40]. For instance, for Bug CM6, one of the test
inputs always equals to �1 when the buggy code is exe-
cuted. As a result, the patch simply uses this value (corre-
sponding to the number of rows) to drive the control flow,
which is wrong. On the other hand, there are other cases
when the repair operator yields a generic and correct solu-
tion upfront. This fact indicates that the same repair opera-
tor may overfit or not according to different bugs. It is
necessary to conduct future research on the qualification of
repair operators according to overfitting.

6 THREATS TO VALIDITY

We discuss the threats to the validity of our results along
four dimensions.

6.1 External Validity

In this work, we evaluate our approach on 22 real-world
bugs with buggy IF conditions and missing preconditions.
One threat to our work is that the number of bugs is not
large enough to represent the actual effectiveness of our
technique. While the number of bugs in our work is fewer
than that in previous work [1], [5], [6], the main strength of
our evaluation is twofold. On one hand, our work focuses
on two specific types of bugs, i.e., buggy IF conditions and
missing preconditions (as opposed to general types of bugs
in [6]); on the other hand, our work is evaluated on real-
world bugs in large Java programs (as opposed to bugs
in small-scale programs in [5] and bugs without object-
oriented features in [1]). We note that it is possible to collect
more real-world bugs, with the price of more human labor.
As mentioned in Section 4.2, reproducing a specific bug is
complex and time-consuming.

6.2 Single Point of Repair

As all previous works in test-suite based repair, the pro-
gram under repair must be repaired at one single point. In
the current implementation of NOPOL, we do not target pro-
grams with multiple faults, or bugs which require patches
at multiple locations.

6.3 Test Case Modification

In our work, we aim to repair bugs with buggy IF conditions
and missing preconditions. Test cases are employed to vali-
date the generated patch. In our experiment, several test
cases are modified to facilitate repair. As mentioned in Sec-
tion 4.4, such test case modification consists of test case
addition, transformation, and deletion. The answer to RQ3
analyzes the root causes of test case modification. All test
case modifications are listed in our project website [27].

6.4 Dataset Construction

We describe how to construct our dataset in Section 4.2. The
manually-written patches of conditional statements are
extracted from commits in the version control system. How-
ever, it is common that a commit contains more code than
the patch in buggy IF conditions and missing preconditions.
In our work, we manually separate these patch fragments.
In particular, the fixing commit of Bug PM2 contains two
nested preconditions within a complex code snippet. We

manually separate the patch of this bug according to the
code context and keep only one precondition. Hence, there
exists a potential bias in the dataset construction.

7 RELATED WORK

We list related work in four categories: approaches to test-
suite based repair, repair besides test-suite based repair,
empirical foundations of test-suite based repair, and related
techniques in NOPOL.

7.1 Test-Suite Based Repair

GenProg. Test-suite based repair generates and validates a
patch with a given test suite. Le Goues et al. [1] propose Gen-
Prog, an approach to test-suite based repair using genetic
programming for C programs. In GenProg, a program is
viewed as an Abstract Syntax Tree while a patch is a newly-
generated AST by weighting statements in the program.
Based on genetic programming, candidate patches are gener-
ated viamultiple trials. The role of genetic programming is to
obtain newASTs by copying and replacing nodes in the orig-
inal AST. A systematic study by Le Goues et al. [41] shows
that GenProg can fix 55 out of 105 bugs in C programs. The
difference between NOPOL and GenProg are as follows.
NOPOL targets a specific defect class while GenProg is
generic; NOPOL uses component-based program synthesis
while GenProg only copies existing code from the same code
base; NOPOL uses a four-phase repair approach (fault locali-
zation, angelic fix localization, runtime trace collection, and
patch synthesis) while GenProg uses a different two-phase
approach (fault localization and trial); NOPOL is designed for
object-oriented Java programswhile GenProg is for C.

AE. Weimer et al. [42] report an adaptive repair method
based on program equivalence, called AE. This method can
fix 54 out of the same 105 bugs as in the work [41] while
evaluating fewer test cases than GenProg.

PAR. Kim et al. [6] propose PAR, a repair approach using
fix patterns representing common ways of fixing bugs in
Java. These fix patterns can avoid nonsensical patches,
which are caused by the randomness of some operators in
genetic programming. Based on the fix patterns, 119 bugs
are examined for patch generation. In this work, the evalua-
tion of patches is contributed by 253 human subjects,
including 89 students and 164 developers.

RSRepair. Qi et al. [12] design RSRepair, a random search
based technique for navigating the search space. This work
indicates that random search performs more efficiently than
genetic programming in GenProg [1]. RSRepair can fix 24
bugs, which are derived from a subset of 55 fixed bugs by
GenProg [41]. Another work by Qi et al. [43] reduces the
time cost of patch generation via test case prioritization.

SemFix. Nguyen et al. [5] propose SemFix, a constraint
based repair approach. This approach generates patches for
assignments and conditions by semantic analysis via SMT
encoding. Program components are synthesized into one
patch via translating the solution of the SMT instance. Our
proposed approach, NOPOL, is motivated by the design of
SemFix. The major differences between NOPOL and SemFix
were discussed in Section 5.1.

Mutation-based repair. Debroy & Wong [25] develop a
mutation-based repair method, which is inspired by the con-
cept of mutation testing. Their method integrates program

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 51

mutants with fault localization to explore the search space
of patches.

DirectFix. Mechtaev et al. [35] propose DirectFix, a repair
method for simplifying patch generation. Potential program
components in patches are encoded into a Maximum Satisfi-
ability (MaxSAT) problem, i.e., an optimization problem;
the solution to the MaxSAT instance is converted into the
final concise patch.

SearchRepair. Ke et al. [44] develop SearchRepair, a repair
method with semantic code search, which encodes human-
written code fragments as SMT constraints on input-output
behavior. This method reveals 20 percent newly repaired
defects, comparing with GenProg, AE, or RSRepair.

SPR. After the original publication presenting NOPOL [10],
Long & Rinard [14] have proposed a repair technique called
SPR using condition synthesis. SPR addresses repairing
conditional bugs, as well as other types of bugs, like missing
non-IF statements. The differences are as follows. First, a
major difference between NOPOL and SPR is that NOPOL syn-
thesizes a condition via component-based program synthe-
sis while SPR is based on multiple trials of pre-defined
program transformation schemas. For instance, in SPR, a
transformation schema for conditional bugs is called condi-
tion refinement, which updates an existing condition in an IF

via tightening or loosening the condition. To repair a bug,
SPR tries a potential patch with the transformation schemas
one by one and validates the patch with the test suite; the
technique of NOPOL is entirely different, based on runtime
data collection during test execution. Second, another differ-
ence is that SPR is for repairing C programs. Patches by SPR
only contain primitive values while patches by NOPOL con-
tain both primitive values and object-oriented expressions
(e.g., fields and unary method calls). Third, in SPR, the tech-
nique of collecting angelic values is based on NOPOL’s, yet
extends it. It finds sequences of values rather than one sim-
plified trace during collecting angelic values in NOPOL (Sec-
tion 3.2). As mentioned in Section 3.2.3, the simplified trace
in NOPOL reduces the search space of patch synthesis, but
may result in failed repair attempts for specific bugs, where
a condition is executed more than once by a test case. Exam-
ples of these bugs can be found in the SPR evaluation [14].
The simplification in NOPOL can be viewed as a trade-off
between repairability and time cost.

Prophet. Also by Long & Rinard, Prophet is an extension
of SPR that uses a probability model for prioritizing candi-
date patches. Based on historical patches, Prophet learns
model parameters via maximum likelihood estimation.
Experiments show that this method can generate correct
patches for 15 out of 69 real-world defects of the GenProg
benchmark. We have also noticed that in NOPOL, it is possi-
ble to synthesize more than one patch with our SMT-based
synthesis implementation. Hence, the probability model in
Prophet can be leveraged to direct the synthesis of more cor-
rect patches by NOPOL.

7.2 Other Kinds of Repair

Besides test-suite based repair, other approaches are
designed for fixing software bugs and improving software
quality. Dallmeier et al. [45] propose Pachika, a fix gene-
ration approach via object behavior anomaly detection.
This approach identifies the difference between program

behaviors by the execution of passing and failing test cases;
then fixes are generated by inserting or deleting method
calls. Carzaniga et al. [46] develop an automatic technique
to avoid failures by a faulty web application. This technique
is referred as an automatic workaround, which aims to find
and execute a correct program variant. AutoFix by Pei et al.
[2], employs a contract-based strategy to generate fixes. This
approach requires simple specifications in contracts, e.g.,
pre-conditions and post-conditions of a function, to enhance
the debugging and fixing process. Experiments on Eiffel
programs show that this approach can fix 42 percent of over
200 faults.

7.3 Empirical Foundations of Repair

Applying automatic repair to real-world programs is lim-
ited by complex program structures and semantics. We list
existing work on the investigation of empirical foundations
of test-suite based repair.

Martinez & Monperrus [7] mine historical repair actions
to reason about future actions with a probabilistic model.
Based on a fine granularity of ASTs, this work analyzes
over 62 thousands versioning transactions in 14 repositories
of open-source Java projects to collect probabilistic distribu-
tions of repair actions. Such distributions can be used as
prior knowledge to guide program repairing.

Fry et al. [47] design a human study of patch maintain-
ability with 150 participants and 32 real-world defects.
This work indicates that machine-generated patches are
slightly less maintainable than human-written ones; hence,
patches by automatic repair could be used as the patches
written by humans. Another case study is conducted by
Tao et al. [48]. They investigate the possibility of leveraging
patches by automatic repair to assist the process of debug-
ging by humans.

Barr et al. [49] address the “plastic surgery hypothesis” of
genetic-programming based repair, such as GenProg. Their
work presents evidences of patches based on reusable code,
which make patch reconstitution from existing code possi-
ble. Martinez et al. [50] conduct empirical investigation to
the redundancy assumption of automatic repair; this work
indicates that code extracted from buggy programs could
form a patch that passes the test suite.

Monperrus [11] details the problem statement and the
evaluation of automatic software repair. This work system-
atically describes the pitfalls in software repair research and
the importance of explicit defect classes; meanwhile, this
paper identifies the evaluation criteria in the field: under-
standability, correctness, and completeness. Zhong & Su
[51] examine over 9,000 real-world patches and summarize
15 findings in two key ingredients of automatic repair: fault
localization and faulty code fix. This work provides empiri-
cal foundations for localization and patch generation of
buggy statements.

Qi et al. [13] propose Kali, an efficient repair approach
based on simple actions, such as statement removal. Their
work presents the repair results via simple methods; mean-
while, their work checks previous empirical results by Gen-
Prog [1], AE [42], and RSRepair [43]. Empirical studies show
that only two bugs by GenProg, three bugs by AE, and two
bugs by RSRepair are correctly patched. All the reported
patches for the other bugs are incorrect due to improper

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

experimental configurations or semantic issues; an incorrect
patch either fails to produce expected outputs for the inputs
in the test suite, or fails to implement functionality that is
expected by developers. As the latest result in test-suite
based repair, the work by Qi et al. [13] shows that repairing
real-world bugs is complex and difficult. Hence, it is worth
investigating the empirical results on fixing real bugs.

Recent work by Smith et al. [40] investigates the overfit-
ting patches on test cases in automatic repair. They report a
controlled experiment on a set of programs written by nov-
ice developers with bugs and patches; two typical repair
methods, GenProg [1] and RSRepair [12], are evaluated to
explore the factors that affect the output quality of auto-
matic repair.

Recent work by Le Goues et al. [52] presents two datasets
of bugs in C programs to support comparative evaluation of
automatic repair algorithms. The detailed description of
these datasets is introduced and a quantified empirical
study is conducted on the datasets. Defects4J by Just et al.
[53] is a bug database that consists of 357 real-world bugs
from five widely-used open-source Java projects. It has
recently been shown [54] that NOPOL is capable of fixing 35
bugs of this benchmark.

7.4 Related Techniques: Program Synthesis and
Fault Localization

Our approach, NOPOL, relies on two important techniques,
program synthesis and fault localization.

Program synthesis aims to form a new program by syn-
thesizing existing program components. Jha et al. [8] mine
programoracles based on examples and employ SMT solvers
to synthesize constraints. In this work, manual or formal
specifications are replaced by input-output oracles. They
evaluate this work on 25 benchmark examples in program
deobfuscation. Their follow-up work [20] addresses the
same problem by encoding the synthesis constraint with a
first-order logic formula. In general, any advance in program
synthesis can benefit program repair by enabling eithermore
complex or bigger expressions to be synthesized.

In our work, fault localization is used as a step of ranking
suspicious statements to find out locations of bugs. A gen-
eral framework of fault localization is to collect program
spectra (a matrix of testing results based on a given test
suite) and to sort statements in the spectra with specific met-
rics (e.g., Tarantula [37] and Ochiai [22]). Among existing
metrics in fault localization, Ochiai [22] has been evaluated
as one of the most effective ones. In Ochiai, statements are
ranked according to their suspiciousness scores, which are
values of the Ochiai index between the number of failed test
cases and the number of covered test cases. Fault localiza-
tion techniques are further improved recently, for example,
the diagnosis model by Naish et al. [38], the localization pri-
oritization by Yoo et al. [55], and the test purification by
Xuan & Monperrus [56].

8 CONCLUSION

In this paper, we have proposed NOPOL, a test-suite based
repair approach using SMT. NOPOL targets two kinds of
bugs: buggy IF conditions and missing preconditions. Given
a buggy program and its test suite, NOPOL employs angelic

fix localization to identify potential locations of patches and
expected values of IF conditions. For each identified location,
NOPOL collects test execution traces of the program. Those
traces are then encoded as an SMT problem and the solution
to this SMT is converted into a patch for the buggy program.
We conduct an empirical evaluation on 22 real-world pro-
grams with buggy IF conditions and missing preconditions.
We have presented four case studies to show the benefits of
generating patches withNOPOL as well as the limitations.

NOPOL is publicly-available to support further replication
and research on automatic software repair: http://github.
com/SpoonLabs/nopol/.

In future work, we plan to evaluate our approach on
more real-world bugs. Our future work also includes
addressing the current limitations, e.g., designing better
strategy for angelic fix localization, collecting more method
calls, and improving the SMT encoding.

ACKNOWLEDGMENTS

The authors would like to thank David Cok for giving us
full access to jSMTLIB. This work is partly supported by
the INRIA Internship program, the INRIA postdoctoral
research fellowship, the CNRS delegation program, the
National Natural Science Foundation of China (under grant
61502345), and the Young Talent Development Program of
the China Computer Federation. F. DeMarco, M. Cl�ement,
S. Lamelas Marcote, and T. Durieux have contributed to this
work during their internship at INRIA Lille—Nord Europe.

REFERENCES

[1] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg:
A generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[2] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Trans.
Softw. Eng., vol. 40, no. 5, pp. 427–449, May 2014.

[3] J. H. Perkins, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst,
M. Rinard, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, and S. Sidiroglou,
“Automatically patching errors in deployed software,” in Proc.
22nd Int. Symp. Operating Syst. Principles, 2009, pp. 87–102.

[4] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze,
“Automatic recovery from runtime failures,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 782–791.

[5] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 772–781.

[6] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 802–811.

[7] M. Martinez and M. Monperrus, “Mining software repair models
for reasoning on the search space of automated program fixing,”
Empirical Softw. Eng., vol. 20, no. 1, pp. 176–205, 2015. [Online].
Available: http://dx.doi.org/10.1007/s10664-013-9282-8

[8] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng., 2010, pp. 215–224.

[9] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. Theory Practice Softw. 14th Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2008, pp. 337–340.

[10] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic
repair of buggy if conditions and missing preconditions with
SMT,” in Proc. 6th Int. Workshop Constraints Softw. Testing, Verifica-
tion, Anal., 2014, pp. 30–39.

[11] M. Monperrus, “A critical review of automatic patch generation
learned from human-written patches: Essay on the problem state-
ment and the evaluation of automatic software repair,” in Proc.
36th Int. Conf. Softw. Eng., 2014, pp. 234–242.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 53

[12] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of ran-
dom search on automated program repair,” in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 254–265.

[13] Z.Qi, F. Long, S. Achour, andM. Rinard, “An analysis of patch plau-
sibility and correctness for generate-and-validate patch generation
systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 24–36.

[14] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proc. 10th Joint Meeting Foundations Softw. Eng.,
2015, pp. 166–178.

[15] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in Proc. Comput. Aided Verification, 2005, pp. 226–238.

[16] K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an understanding
of bug fix patterns,” Empirical Softw. Eng., vol. 14, no. 3,
pp. 286–315, 2009.

[17] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value
replacement,” in Proc. Int. Symp. Softw. Testing Anal., 2008,
pp. 167–178.

[18] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through auto-
mated predicate switching,” in Proc. 28th Int. Conf. Softw. Eng.,
2006, pp. 272–281.

[19] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic
debugging,” in Proc. Int. Conf. Softw. Eng., 2011, pp. 121–130.

[20] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of
loop-free programs,” in Proc. 32nd ACM SIGPLAN Conf. Program.
Language Design Implementation, 2011, pp. 62–73.

[21] S. Lamelas Marcote and M. Monperrus, “Automatic repair of infi-
nite loops,” vol. abs/1504.05078, CoRR, 2015, http://arxiv.org/
abs/1504.05078.

[22] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. Testing Academic
Indus. Conf. Practice Res. Techn., 2007, pp. 89–98.

[23] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators,” in Proc. Int. Symp. Softw. Testing Anal. 2013,
pp. 314–324.

[24] J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in Proc. 30th IEEE Int. Conf.
Softw. Maintenance Evolution, 2014, pp. 191–200. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSME.2014.41

[25] V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proc. 3rd Int. Conf. Softw.
Testing, Verification Validation, 2010, pp. 65–74.

[26] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monper-
rus, “Fine-grained and accurate source code differencing,” in Proc.
29th ACM/IEEE Int. Conf. Automated Softw. Eng., 2014, pp. 313–324.

[27] Nopol dataset website [Online]. Available: http://github.com/
SpoonLabs/nopol-experiments/, accessed: 2015-06-01.

[28] On contributing patches of apache commons [Online]. Available:
http://commons.apache.org/patches.html#Test_Cases, accessed:
2015-06-01.

[29] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[30] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and
L. Seinturier, “Spoon: A library for implementing analyses and
transformations of Java source code,” Softw.: Practice Exp., 2015,
http://dx.doi.org/10.1002/spe.2346.

[31] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: An
eclipse plug-in for testing and debugging,” in Proc. Automated
Softw. Eng., 2012, pp. 378–381.

[32] D. R. Cok, “jSMTLIB: Tutorial, validation and adapter tools for
SMT-LIBv2,” in Proc. 3rd Int. Symp. NASA Formal Methods, 2011,
pp. 480–486.

[33] Nopol source code (GPL license) [Online]. Available: http://
github.com/SpoonLabs/nopol/, accessed: 2015-06-01.

[34] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier, and
M. Monperrus, “B-Refactoring: Automatic test code refactoring to
improve dynamic analysis,” Inform. Softw. Tech., vol. 76, pp. 65–
80, 2016, http://dx.doi.org/10.1016/j.infsof.2016.04.016.

[35] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in Proc. 37th Int. Conf. Softw. Eng., 201,
pp. 448–458.

[36] Y. Li, S. Cheung, X. Zhang, and Y. Liu, “Scaling up symbolic anal-
ysis by removing z-equivalent states,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 4, pp. 34:1–34:32, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2652484

[37] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proc. 24th Int. Conf.
Softw. Eng., 2002, pp. 467–477.

[38] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodology,
vol. 20, no. 3, p. 11, 2011.

[39] J. Xu, Z. Zhang, W. Chan, T. Tse, and S. Li, “A general noise-
reduction framework for fault localization of Java programs,”
Inform. Softw. Technol., vol. 55, no. 5, pp. 880–896, 2013.

[40] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in
Proc. 10th Joint Meeting Eur.Softw. Eng., Sep. 2015, pp. 532–543.

[41] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 3–13.

[42] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng.,, 2013,
pp. 356–366. [Online]. Available: http://dx.doi.org/10.1109/
ASE.2013.6693094

[43] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Proc. IEEE Int.
Conf. Softw. Maintenance, 2013, pp. 180–189. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2013.29

[44] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search,” in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng., Nov. 2015, pp. 295–306.

[45] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2009, pp. 550–554.

[46] A. Carzaniga, A. Gorla, N. Perino, and M. Pezz�e, “Automatic
workarounds for web applications,” in Proc. ACM SIGSOFT Int.
Symp. Foundations Softw. Eng., 2010, pp. 237–246.

[47] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proc. Int. Symp. Softw. Testing Anal., 2012,
pp. 177–187. [Online]. Available: http://doi.acm.org/10.1145/
2338965.2336775

[48] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated
patches as debugging aids: A human study,” in Proc. 22nd
ACM SIGSOFT Int. Symp. Foundations Softw. Eng., 2014,
pp. 64–74. [Online]. Available: http://doi.acm.org/10.1145/
2635868.2635873

[49] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Foundations Softw. Eng., 2014, pp. 306–317. [Online]. Avail-
able: http://doi.acm.org/10.1145/2635868.2635898

[50] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingre-
dients already exist? an empirical inquiry into the redundancy
assumptions of program repair approaches,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 492–495. [Online]. Available: http://
doi.acm.org/10.1145/2591062.2591114

[51] H. Zhong and Z. Su, “An empirical study on fixing real bugs,” in
Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 913–923.

[52] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass bench-
marks for automated repair of c programs,” IEEE Trans. Softw.
Eng., vol. 41, no. 12, pp. 1236–1256, Dec. 2015.

[53] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of
existing faults to enable controlled testing studies for Java pro-
grams,” in Proc. Int. Symp. Softw. Testing Anal., Jul. 23–25 2014,
pp. 437–440.

[54] M. Martinez, T. Durieux, J. Xuan, R. Sommerard, and M. Monper-
rus, “Automatic repair of real bugs: An experience report on the
defects4J dataset,” vol. abs/1505.07002, CoRR, 2015, http://arxiv.
org/abs/1505.07002.

[55] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritiza-
tion: Comparing information-theoretic and coverage-based
approaches,” ACM Trans. Softw. Eng. Methodology, vol. 22, no. 3,
pp. 19, 2013.

[56] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proc. 22nd ACM SIGSOFT Int. Symp. Founda-
tions Softw. Eng., 2014, pp. 52–63.

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 1, JANUARY 2017

Jifeng Xuan received the BSc degree in software
engineering and the PhD degree both from
Dalian University of Technology, China, in 2007
and 2013, respectively. He is a research profes-
sor at the State Key Lab of Software Engineering,
Wuhan University, China. He was previously a
postdoctoral researcher at the INRIA Lille—Nord
Europe, France. His research interests include
software testing and debugging, software data
analysis, and search based software engineering.
He is a member of the IEEE.

Matias Martinez received the master degree in
computer engineering from UNICEN, Argentina,
and the PhD degree form the University of Lille,
France, in 2014. He is currently a postdoctoral
researcher at the University of Lugano (USI),
Switzerland. His current research focuses on
automatic software repair, software testing, and
mining software repositories.

Favio DeMarco received the MSc degree
in computer science from the Universidad de
Buenos Aires, Argentina. His research interests
include software repair.

Maxime Cl�ement is currently working toward the
MSc degree in computer engineering from the
Lille 1 University, France. He is currently working
in an ITservices company as part of an internship
program.

Sebastian Lamelas Marcote received the MSc
degree in computer science from the Universidad
de Buenos Aires (FCEN), Argentina in 2015. He
is currently working in the industry, but still has a
research spirit focused on the integration of com-
puter power with other scientific disciplines.

Thomas Durieux received the master degree in
computer engineering from the University of Lille,
France in 2015. He is working toward the PhD
degree in software engineering at the University
of Lille. His current research focuses on auto-
matic repair at runtime.

Daniel Le Berre is a professor of computer sci-
ence at the Artois University, Lens, France, and a
member of the CRIL research lab, a research
center specialized in artificial intelligence. His
main research interests include boolean con-
straint programming and its applications to soft-
ware engineering.

Martin Monperrus received the PhD from the
University of Rennes in 2008. He has been an
associate professor at the University of Lille,
France, since 2011. He is an adjunct researcher
at Inria. He was previously with the Darmstadt
University of Technology, Germany, as a research
associate. His research interests include the field
of software engineering with a current focus on
automatic software repair. He is a member of the
IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XUAN ETAL.: NOPOL: AUTOMATIC REPAIR OF CONDITIONAL STATEMENT BUGS IN JAVA PROGRAMS 55

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

